Germany - Math Olympiad Question

Поделиться
HTML-код
  • Опубликовано: 2 фев 2025

Комментарии • 27

  • @elonmarx
    @elonmarx Месяц назад +18

    Are you sure that it is math olympiad question? No brain needed to solve this. it is easy

  • @Marinealver
    @Marinealver Месяц назад +6

    The trick is understanding that there are 2 sets of solutions.

  • @giannaleoci2328
    @giannaleoci2328 Месяц назад +5

    x=8-y
    (8-y)y=64
    y^2-8y+64=0
    y=[8+-rq(64-256)]/2=
    [8+-8rq3 i]/2=
    4+-rq3 i
    x=8-(4+-rq3 i)=
    4+-rq3 i

  • @Rishon-n5j
    @Rishon-n5j Месяц назад +1

    I got this question in my olympiad exam and i didn't know how to solve it : [2^(x-3)] × [3^(2x-8) ]=36 ; find x

  • @jan-willemkrans7074
    @jan-willemkrans7074 Месяц назад +2

    Always fun to see seemingly simple statements to boil down to complex solutions. Good exercise, but this one wasn't too hard to solve for me and only took a few steps to complete. (Note that I used the textbook complete the square method for this as there's no leading coefficient for x or y squared after the first step. After that, you almost immediately get the answers.)
    Perhaps people would appreciate the logic behind why complex solutions appear here. It's in the maximizing and minimizing values for the addition, then multiplication of the system. A multiplication of values with a hard limit on the sum like in this system of equations is always maximized with real numbers if the multiplied values are equal. From the first equations you would then get 4+4=8, but in the second 4*4=16, so it doesn't match. To get to 64 it simply has to come from a higher dimension. A similar thing happens with similar simple systems of equations that contain a complex number on one side each. You then sometimes wind up solving them with another higher dimension, too. That's in the form of quaternions (and onward number systems, but these subjects aren't taught much in universities worldwide).

    • @Marinealver
      @Marinealver Месяц назад

      This was the easiest because it was one of the few that didn't have i as part of the solutions.

  • @zawatsky
    @zawatsky Месяц назад +1

    Если (х+у)²=xy означает, что неполный квадрат суммы равен нулю. Таким образом x³-y³=0, при этом мы точно знаем про квадрат, а значит, x³=y³, т. е. х=у (нечётная степень). Пробуем подставить в неполный квадрат: x²+x²+x²=0, т. е. 3x²=0⇔х=0, а значит и у тоже. Но тогда сумма двух нулей получается равной восьми. Выходит, что решений (во всяком случае, действительных) не имеется.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Месяц назад

    (4)+(4)=8 (2^2)+(2^2).(1^1)+(1^2) (1^2)(y ➖ 2x+1). 8^8 2^3^2^3 1^1^1^1^1^2 1^2(xy ➖ 2xy+1).

  • @himel-e8w
    @himel-e8w Месяц назад +2

    I am from Bangladesh. I read in class 11.
    You are a best teacher. Take love❤.

  • @RubelSk-m9r
    @RubelSk-m9r Месяц назад +4

    Give that,
    x+y = 8 ------>(I)
    xy = 64
    (x-y)² = (x+y)² -4xy
    (x-y)² = 8² - 4×64
    (x-y)² = -3×64
    (x-y) = √(-3×64)
    (x-y) = 8√3i. ----->(ii)
    From (i) & (ii),
    2x = 8√3i + 8
    x = 4(√3i + i)
    y = 8 - x
    y = 8 - 4(√3i + 1)
    y = 4 - 4√3i
    y = -4(√3i-1)

  • @James-bak5
    @James-bak5 Месяц назад +1

    I saw it and i thought well thats a quadratic and i got it after using the formulae but i can also understand the double equation method

  • @ShineMultiDevice-zi1iu
    @ShineMultiDevice-zi1iu Месяц назад +3

    I use the same solution with searching some variable value, i try search the value of y first but, fortunately i still get the same answer with bit of Missing Point 😅

  • @rkm7917
    @rkm7917 Месяц назад

    x^2-8x+64=0
    (x-4)^2+48=0
    (x-4)=+-i√48
    x=4+-4i√3

    • @rkm7917
      @rkm7917 Месяц назад

      y=8-x
      y=4+-4i√3

    • @rkm7917
      @rkm7917 Месяц назад

      S=(4+4i√3, 4-4i√3)

  • @eneskavcakar
    @eneskavcakar Месяц назад

    We can see that this equation does not have any real results with arithmetic mean and geometric mean:
    x + y >= 2√(xy)
    8² >= 4xy
    16 >= xy (x = y = 4).

  • @Myroslav1911
    @Myroslav1911 Месяц назад

    Using AM-GM inequality we can say that there is no real solution

  • @BabitaSharma-q9j7t
    @BabitaSharma-q9j7t 16 дней назад

    Complex no. Will we ans.

  • @pieceofwaterofficial330
    @pieceofwaterofficial330 10 дней назад

    We lerarned this in grade 7

  • @Christopher-e7o
    @Christopher-e7o Месяц назад

    X,2×+5=8

  • @BabitaSharma-q9j7t
    @BabitaSharma-q9j7t 16 дней назад

    Kinda easy

  • @HangingQueen
    @HangingQueen Месяц назад +6

    No solution

    • @Sham_Fl
      @Sham_Fl Месяц назад +5

      Imaginary numbers

  • @marceloboda9953
    @marceloboda9953 Месяц назад

    🇩🇴🇺🇸🇩🇴🇺🇸🇩🇴

  • @NounPhechnai
    @NounPhechnai Месяц назад +1

    1st

  • @Frank-kx4hc
    @Frank-kx4hc Месяц назад

    Desliked