Epochs, Iterations and Batch Size | Deep Learning Basics

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 16

  • @rahiiqbal1294
    @rahiiqbal1294 10 месяцев назад +1

    this was very helpful, thank you :)

  • @mohammadkhojastehmehr4715
    @mohammadkhojastehmehr4715 3 года назад +4

    Great video! Absolutely helpful!

  • @Unstable_Diffusion89
    @Unstable_Diffusion89 5 месяцев назад

    @5:02, what are the x and y axis representing. I'm pretty sure the y-axis is loss but x-axis?

  • @lakeguy65616
    @lakeguy65616 2 года назад +1

    so the optimal batch size is the largest one that fits within the main memory and or gpu memory?

  • @jeffreyzhuang4395
    @jeffreyzhuang4395 Год назад

    Great video! Thanks for sharing!

  • @lucaterraneo7274
    @lucaterraneo7274 Год назад

    Really nice video, clear explanation. Thank you ;)

  • @Flyingmachines350
    @Flyingmachines350 9 месяцев назад

    Great explanation!

  • @code_ho
    @code_ho 2 года назад

    are those three required to train a model?

  • @mateocid7070
    @mateocid7070 2 года назад

    great xplantation moitas grazas

  • @ha9u63a7
    @ha9u63a7 3 года назад

    Not sure if I understood - "Stochastic Gradient Descent (Mini-Batch) introduces noise" - how so? Mini-batches will have less noise compared to FB Gradient Descent, won't it?

    • @Sim_
      @Sim_ 2 года назад +1

      It has more noise because the average of the gradients computed at each iteration (update of weights) is different from the true gradient computed over the whole dataset.
      As we make many of these small weight updates in SGD throughout the epoch, these gradients should average something close to the true gradient (as seen in the graph at ruclips.net/video/SftOqbMrGfE/видео.html), but it is not exactly the same.
      This difference in the weight updates at each iteration is the noise she's referring to.

  • @pinkuntha1178
    @pinkuntha1178 2 года назад +1

    Beautiful voice, sister

  • @shamssultan3106
    @shamssultan3106 2 года назад

    helpful

  • @AdamSioud-m3s
    @AdamSioud-m3s 3 месяца назад

    holy great

  • @__________________________6910
    @__________________________6910 2 года назад

    noice