2024.03.26, Evangelos Protopapas, Erdős-Pósa Dualities for Minors

Поделиться
HTML-код
  • Опубликовано: 2 окт 2024
  • Evangelos Protopapas, Erdős-Pósa Dualities for Minors
    March 26 Tuesday @ 4:30 PM - 5:30 PM KST
    Room B332, IBS (기초과학연구원)
    Evangelos Protopapas
    University of Montpellier
    Let $\mathcal{G}$ and $\mathcal{H}$ be minor-closed graphs classes. The class $\mathcal{H}$ has the Erdős-Pósa property in $\mathcal{G}$ if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that every graph $G$ in $\mathcal{G}$ either contains (a packing of) $k$ disjoint copies of some subgraph minimal graph $H
    ot\in \mathcal{H}$ or contains (a covering of) $f(k)$ vertices, whose removal creates a graph in $\mathcal{H}$. A class $\mathcal{G}$ is a minimal EP-counterexample for $\mathcal{H}$ if $\mathcal{H}$ does not have the Erdős-Pósa property in $\mathcal{G}$, however it does have this property for every minor-closed graph class that is properly contained in $\mathcal{G}$. The set $\frak{C}_{\mathcal{H}}$ of the subset-minimal EP-counterexamples, for every $\mathcal{H}$, can be seen as a way to consider all possible Erdős-Pósa dualities that can be proven for minor-closed classes. We prove that, for every $\mathcal{H}$, $\frak{C}_{\mathcal{H}}$ is finite and we give a complete characterization of it. In particular, we prove that $|\frak{C}_{\mathcal{H}}| = 2^{\operatorname{poly}(\ell(h))}$, where $h$ is the maximum size of a minor-obstruction of $\mathcal{H}$ and $\ell(\cdot)$ is the unique linkage function. As a corollary of this, we obtain a constructive proof of Thomas' conjecture claiming that every minor-closed graph class has the half-integral Erdős-Pósa property in all graphs.
    This is joint work with Christophe Paul, Dimitrios Thilikos, and Sebastian Wiederrecht.

Комментарии •