SOLIDWORKS - Center of Gravity, Tipping and Lifting

Поделиться
HTML-код
  • Опубликовано: 7 авг 2024
  • See more at: www.goengineer.com/products/so...
    Learn about the SOLIDWORKS tools for Center of Gravity and Tipping and Simulation tools for Lifting and stress Calculations.
    Webinar presented by Corey Bower of GoEngineer.
    About GoEngineer:
    GoEnginneer delivers software, technology and expertise that enable companies to unlock innovation and deliver better products faster. With more than 30 years experience and thousands of customers in high-tech, medical, machine design, energy and other industries, GoEngineer provides best-in-class design solutions from SOLIDWORKS, Stratasys, CAMWorks and Agile PLM.
    www.goengineer.com
    / goengineer
    / goengineer
    / goengineer
    plus.google.com/1010845249227...

Комментарии • 33

  • @rckygrhm1
    @rckygrhm1 4 года назад +10

    Im interested in how to link the spreadsheet to the model. Maybe could show this in another video.

  • @stopdictatorpartizan2546
    @stopdictatorpartizan2546 6 лет назад +2

    Uau, great as usual.

  • @yoss5519
    @yoss5519 4 года назад +1

    Thank you, very helpful.

  • @MetrologyEngineer
    @MetrologyEngineer 3 года назад +7

    2:18 What are those angles/how do you calculate them since it appears they are a function of how broad the base is for the two perspectives?

  • @azteca313
    @azteca313 3 года назад

    Thank you, my friend! It helped me a lot!

    • @goengineer
      @goengineer  3 года назад +1

      Glad it helped! Be sure to subscribe for more great 3D CAD Design and 3D printing tutorials.

  • @dharmendrarajak8606
    @dharmendrarajak8606 5 месяцев назад

    If you can provide the solidworks assembly file. to better understand and put into practice, concepts you showed in this really wonderfull video, that would be really great🙂

  • @eded4889
    @eded4889 3 года назад +1

    How did you add the protractors to the desgin?

  • @mohdshadab-ug2ut
    @mohdshadab-ug2ut 2 года назад

    Can we use remote fixation in solidworks simulation

  • @gauravpatil477
    @gauravpatil477 3 года назад +1

    can you share spreadsheet.

  • @taurusengineering7517
    @taurusengineering7517 3 года назад +1

    Can you please explain how the completeunit can be tested along with the pad eyes along the sling angle?

  • @tongsk1436
    @tongsk1436 Год назад

    How to create sling 4 line.

  • @JohnDoe-nt4sz
    @JohnDoe-nt4sz 6 лет назад

    Cory - Any suggestions to locate the center of gravity and tipping point for a shopping cart?

    • @goengineer
      @goengineer  6 лет назад +2

      Hi John,
      An analysis is not necessary to find a tipping point of an object. The Center of Mass can be shown in your model (via 'Insert', 'Reference Geometry', 'Center of Mass'). Drawing a straight sketch line from that center of mass to the fulcrum/edge you are tipping over will show the tipping angle for the model. It is when the Center of Mass rotates beyond this line that a tip will occur.

    • @JohnDoe-nt4sz
      @JohnDoe-nt4sz 6 лет назад

      Cory - Can you recommend someone to assist me with this?

    • @sams.1597
      @sams.1597 4 года назад

      John Doe hi John, you can simply click on the evaluate tab and mass properties. Then check the box for ”center of mass” feature.

  • @RDP1980
    @RDP1980 4 года назад +1

    As much as the video helps, the fixed points are totally wrong considering the sling angle as you have shown. These points only work if it its lifted using SPREADER BEAM with 90deg vertical slings and not as shown.

  • @techeaner
    @techeaner 3 года назад

    Bro can u plzz tell me that how u enable these ropes and how ringing and protectors option bcz in my solidworks 2017 there is no option .

    • @techeaner
      @techeaner 3 года назад

      Broo plz givee solution

    • @goengineer
      @goengineer  3 года назад

      The ropes are simply sketch entities which were hidden and then shown… The protractors are SolidWorks part models hidden and then shown… There are no options to ‘enable’ these, this is simply technique to illustrate the message.

    • @techeaner
      @techeaner 3 года назад

      @@goengineer then bro how i will enable the protactors option in solidworks 2017 ?

  • @andreastarnini
    @andreastarnini 6 лет назад +6

    Boundary conditions are completely wrong! Sling forces have horizontal components self equilibrated and fixed supports avoid compression on upper beams. Try with balanced loadings and minimal supports. Also pad-eye model is not correct because on real case there is a supplemetary bending moments due to deformation of vertical beam. Forces applied to pad eye holes are wrong because on the model are applied to all internal surface. Pin shakle transmits a different kind of load

    • @taurusengineering7517
      @taurusengineering7517 3 года назад

      Andrea Can you please explain how the boundary conditions can be correctly simulated. I mean full setup with pad eyes.?

    • @andreastarnini
      @andreastarnini 3 года назад +3

      ​@@taurusengineering7517 With padeyes is more realistic because there is an additional bending moment due to the padeys height. You can define the forces direction by a sketch starting from the padeyes hole centre to the lifting point. Forces must have parabolic distribution,. In Simulation yuo have to define 4 new coordinate systems, one for padeye. One axis (x or y) must be orientated as the sling. Z must be the hole axis. Because of the force system is self equilibrated, you can try switching on "soft spings" in the study options. If the solver doesn't find a solution you can apply mnimal supports only to avoid rigid body motions. Generally the rule is 3 DOF locked on one point - 2DOF locked on other point and 1DOF locked on other point.

    • @taurusengineering7517
      @taurusengineering7517 3 года назад

      @@andreastarnini Thank you very much for the assistance. I will revert back once I finish the task as you explained.

  • @suhailp4855
    @suhailp4855 6 лет назад

    very helpful

    • @goengineer
      @goengineer  6 лет назад

      We are so happy to help, Suhail.

  • @4n2earth22
    @4n2earth22 8 лет назад +2

    Cory, thanks for the interesting webinar. It was informative to see the different ways to calculate loads, especially your Excel spreadsheet. However, I think perhaps this was an exercise in demonstration of tools, and not so much engineering applications for the tools. I say 'perhaps', because I could be way off base here: My perception of the assembly and loads to be determined do not match the analysis you presented. The loads imposed on the cage are on the four long horizontal beams where the brackets for the vessels are attached, not on the bottom of the cage as analyzed. The stresses on the cage from the lifting eyes was not calculated at all; just the ability of the lifting eyes, in isolation, to sustain the loads. The connection of the lifting eyes to the cage, and the loads imposed on the structure is a design criteria that is critical to assess, as a system. I do not mean to take away from your excellent presentation on the tools as you did; the trees look fine! It is just the forest I am having a bit of concern with.

    • @chiobeardave8288
      @chiobeardave8288 2 года назад

      He has other tutorials where he goes into depth on stress analysis. This video specifically states it covers "Center of Gravity, Tipping and Lifting"

  • @tomjowett3290
    @tomjowett3290 5 лет назад +8

    Your boundary conditions a categorically incorrect..... you are NOT taking into account the compression in the upper horizontal member which connect to the lifting eyes due to the angle of the lifting strops........ the boundary conditions you have applied will ONLY work with spreader beams, not with the lifting strop angle you have applied.......... think about the consequences of misleading engineers who may be copying your approach!!!!!!!!!!

    • @TheCuriousOrbs
      @TheCuriousOrbs 4 года назад +1

      Relax, It's just an example. Your point isn't even the most serious omission from the example. The tabs aren't "glued" to the top members so the boundary condition should represent welds because that's where the system would fail in reality.