Numerical solution by Modified Euler's method to dy/dx=log(x+y) || 18mat31 || Dr Prashant Patil

Поделиться
HTML-код
  • Опубликовано: 5 фев 2025
  • In this video, the Numerical solution by Modified Euler's method to dy/dx=log(x+y), y(1)=2 is evaluated step by step in detail and easy steps.
    #DrPrashantPatil#Numericalmethods#18MAT31_Module04#Lecture09
    For more videos and playlist of Engineering Mathematics go through the playlists
    1)18MAT31- TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES:
    1) Laplace Transforms [18MAT31-Module 01]:
    • Laplace Transforms
    2) Inverse Laplace Transform [18MAT31-Module 01]:
    • Inverse Laplace Transf...
    3) Fourier Series | 18mat31 | Module 02 | Dr Prashant Patil
    • Fourier Series | 18mat...
    4) Numerical Methods for First Order First Degree ODE | 18mat31 | Module 04 | Dr Prashant Patil
    • Numerical Methods for ...
    2)18MAT21- Advanced Calculus and Numerical Techniques:
    1) Vector Calculus [18MAT21-Module 01]:
    • Vector Calculus || 21M...
    2) Ordinary Differential Equation of Higher order[18MAT21-Module 02]:
    • Ordinary Differential ...
    3) Partial Differential Equations [18MAT21-Module 03]:
    • Partial Differential E...
    4) Infinite Series [18MAT21-Module 04]:
    • Infinite Series [18MAT...
    3) 18MAT41- Complex Analysis, Probability and Statistical Methods:
    1) Conformal Transformations[18MAT41-Module 02]
    • Conformal Transformati...
    2) Complex Integration[18MAT41-Module 02]
    • Complex Integration ||...
    3) Probability Distributions[18MAT41-Module 03]
    • Probability Distributi...
    4) Joint Probability Distribution and Sampling [18MAT41-Module 05]
    • Joint Probability Dist...
    4)18MATDIP41- Additional Mathematics II:
    1) Probability[18MATDIP41-Module05]
    • 18MATDIP41 | Additiona...

Комментарии • 11

  • @happinesschannel6601
    @happinesschannel6601 3 года назад +1

    Exacellent teaching sir

  • @RBInspiration
    @RBInspiration 10 месяцев назад

    . Using Modified Euler's method, find an approximate value of y when x = 0.3, given that d = log(x+y) y = 1 when x = 0. Take h = 0.

    • @RBInspiration
      @RBInspiration 10 месяцев назад

      Please give the solution for this sir

  • @kosalkumarlamani9709
    @kosalkumarlamani9709 3 года назад +1

    Sir do on engineering mathematics(1.2.3.4) sir plz

  • @Funfun991
    @Funfun991 Год назад +1

    wow

  • @chaitanya7087
    @chaitanya7087 2 года назад

    Sir ln ? Why we can't use log?

    • @DrPrashantPatil7899
      @DrPrashantPatil7899  2 года назад +2

      Because ln is to the base e and log is to the base 10, and whenever log is coming after differentiation it is to the base e that why we are taking it as ln

    • @chaitanya7087
      @chaitanya7087 2 года назад

      @@DrPrashantPatil7899 thank you sir 👍

    • @YouTubeAcc-eg6fk
      @YouTubeAcc-eg6fk 8 месяцев назад

      @@DrPrashantPatil7899 they can write dy/dx= ln(x+y) instead, confusing!