How to take the derivative? (30 problems focusing on the first step)

Поделиться
HTML-код
  • Опубликовано: 9 фев 2025
  • How do we take the derivative? Here we will go over 30 typical calculus 1 derivative problems and focus on the differentiation step. This video will help you master the derivative techniques including the power rule, product rule, quotient rule, chain rule, implicit differentiation, and more!
    Here's the free file: / calc-1-focus-on-113341690
    Answer key: / calc-1-focus-on-113341988
    Check out 100 derivatives: • 100 calculus derivativ...
    -----------------------------
    Ask me calculus on Threads: www.threads.ne...
    Support this channel and get my calculus notes on Patreon: 👉
    / blackpenredpen
    Get the coolest math shirts from my Amazon store 👉 amzn.to/3qBeuw6
    -----------------------------
    #calculus #bprpcalculus #apcalculus #tutorial #math

Комментарии •

  • @jrhabqgduwha396
    @jrhabqgduwha396 4 месяца назад +16

    Now I know all about The Box

  • @Hjominbonrun
    @Hjominbonrun 4 месяца назад +5

    Yes, this is a good video.
    Teaching math is not about solving the entire problem and taking long time to simplify.
    It should be about teaching patterns, techniques and showing applications of rules.
    I teach my son by showing him 100 problems and he has to talk to me to tell me what he sees on each problem and what he plans to do.
    Not waste time multiplying decimals.

  • @frylockfromathf9592
    @frylockfromathf9592 3 месяца назад +1

    This came just in time for my derivatives test so talk about awesome timing thank you!

  • @leaf647
    @leaf647 3 месяца назад +2

    Every time I hear you say box I suffer less, thank you

  • @anonymouscheesepie3768
    @anonymouscheesepie3768 4 месяца назад +2

    1. e^(sqrt(x)) * 1/(2sqrtx) = e^sqrt(x)/(2sqrt(x))
    2. sec(x^2 + x)tan(x^2 + x) * (2x + 1) = (2x + 1)sec(x^2 + x)tan(x^2 + x)
    3. (cosx(1 + cosx) + sin^2x)/(1 + cosx)^2 = (cosx + 1)/(1 + cosx)^2 = 1/(1 + cosx)
    4. 2xtanx + x^2sec^2x

  • @omograbi
    @omograbi 4 месяца назад +5

    I don't have access to Patreon from my countrey, could you please share the link via other clouds?

    • @perekman3570
      @perekman3570 4 месяца назад +1

      Some countries block Patreon? That's just evil.

  • @danielkovacs6809
    @danielkovacs6809 3 месяца назад

    Always The Box.
    It's like a mathematical horror movie.

  • @EliteKoji_1215
    @EliteKoji_1215 4 месяца назад +1

    Is there any need to further simplify the answer ?

  • @matheusvivan3434
    @matheusvivan3434 4 месяца назад +1

    The GOAT

  • @done3500
    @done3500 4 месяца назад

    Please take this👑

  • @SarojtapashLalita
    @SarojtapashLalita Месяц назад

    I got all 30 right
    Is it enough
    Can I assume I have passed calc 1 derivative

  • @Lukrafiveman
    @Lukrafiveman 4 месяца назад +2

    Wheres the derivative table?

    • @bprpcalculusbasics
      @bprpcalculusbasics  4 месяца назад +1

      That is also in the first Patreon link. You just need to be a free member to access it.

    • @Lukrafiveman
      @Lukrafiveman 4 месяца назад

      @@bprpcalculusbasics Thanks

  • @eustacenjeru7225
    @eustacenjeru7225 4 месяца назад

    So cool

  • @GabrielDeBorja
    @GabrielDeBorja 3 месяца назад

    Some are not simplified

  • @Kotuseid
    @Kotuseid 4 месяца назад

    Yay

  • @zactastic4k955
    @zactastic4k955 4 месяца назад +3

    Now differentiate e^ln(sin(arcsin(x))) no simplification

    • @carultch
      @carultch 4 месяца назад +4

      Given:
      e^(ln(sin(arcsin(x))))
      Assign the function names, f(x), g(x), h(x), and p(x), to show the chain rule process:
      f(x) = e^x
      g(x) = ln(x)
      h(x) = sin(x)
      p(x) = arcsin(x)
      Corresponding derivatives:
      f'(x) = e^x
      g'(x) = 1/x
      h'(x) = cos(x)
      p'(x) = 1/sqrt(1 - x^2)
      First chain rule:
      d/dx h(p(x)) = h'(p(x)) * p'(x)
      Next chain rule:
      d/dx g(h(p(x))) = g'(h(p(x))) * h'(p(x)) * p'(x)
      Final chain rule:
      d/dx f(g(h(p(x)))) = f'(g(h(p(x)))) * g'(h(p(x))) * h'(p(x)) * p'(x)
      Thus:
      d/dx e^(ln(sin(arcsin(x)))) =
      e^(ln(sin(arcsin(x)))) * 1/(sin(arcsin(x))) * cos(arcsin(x)) 1/sqrt(1 - x^2)
      As an exercise to you, this will simplify to 1. Which we expect, because your given function is all compositions of inverses, that ultimately simplifies to x.

    • @alyme_r
      @alyme_r 4 месяца назад +4

      God revealed to me in a dream that the answer is 1.

    • @Orillians
      @Orillians 4 месяца назад

      @@carultch This literally feels like chatgpt write it 😭😭

  • @guruone
    @guruone 4 месяца назад

    FullSimplify[RSolveValue[(f[x] - f[x - a])/a == 1 - 2 x f[x], f[x], x] /. C[1] -> 0 /. a -> 1/z] as z->Infinity
    What is the function?