YOLO V2 - Better, Faster & Stronger || YOLO OBJECT DETECTION SERIES || YOLO9000

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 42

  • @MLForNerds
    @MLForNerds  2 года назад +3

    Watch the full playlist of YOLO Object Detection Family
    ruclips.net/p/PL1u-h-YIOL0sZJsku-vq7cUGbqDEeDK0a

    • @helloansuman
      @helloansuman 7 месяцев назад +1

      This video ppt is missing in github. But great work.

    • @MLForNerds
      @MLForNerds  7 месяцев назад

      Yeah, it's huge in MBs, need to upload in lfs or share drive link. Will do

    • @helloansuman
      @helloansuman 7 месяцев назад

      @@MLForNerds yes gdrive link will be good. 👍

  • @Maximos80
    @Maximos80 3 месяца назад +1

    The best explanations of YOLO on RUclips. Period. Thank you!🙏

  • @kunalliman
    @kunalliman 9 месяцев назад +3

    After so many searches......The best playlist on RUclips for YOLO Object Detection Family. 👍

  • @mdminhazurrahman3089
    @mdminhazurrahman3089 Год назад +7

    I think even 6th grade student will understand your explanation!!! Awesome awesome!!!

    • @MLForNerds
      @MLForNerds  Год назад

      Thank you for the heartfelt response.🙏

  • @raghavbhandari6983
    @raghavbhandari6983 8 месяцев назад +4

    Pls Make video on Yolo v5,v6,v7,v8 and v9. It will be great if you cover YOLO NAS, Yolo World . Thank You for your amazing Videos!!:)

  • @AjitChaturvedi-y2x
    @AjitChaturvedi-y2x 2 месяца назад

    The number of prediction for each grid is not equal to the number of classes. Its depend upon the number of anchor boxes and in the paper they have taken the 5 anchor boxes for each grid cell. So maximum number of prediction can yolov2 is 13*13*5.

  • @shiholololo1053
    @shiholololo1053 Год назад +1

    Thanks for this tutorial. Your level of understanding and teaching is beyond par - A gift indeed.

  • @wiputtuvaynond761
    @wiputtuvaynond761 3 месяца назад

    Thank you very much for the best explaination of yolo papers on youtube. I have a question of loss calculation on multiscale training. This affects the number of output grid (WxHXS) used in loss calculation when input image(WxH) size changes. How does the loss calculation maintain consistency for this training scheme?

  • @glowish1993
    @glowish1993 11 месяцев назад +3

    sick lectures so underrated!

  • @loading_700
    @loading_700 Месяц назад

    Thank you for this wonderful video. I have one question.
    YOLOv2 decides the ratios for the anchor boxes using the GT(ground truth) dataset.
    So does that mean it cannot be used(retrained) with the dataset that doesn't have GTs?

  • @Koanhshwudhbdne
    @Koanhshwudhbdne Год назад +1

    best explanation of yolo on the internet

  • @harshans7712
    @harshans7712 2 месяца назад

    Thanks a lot for this video, this was really helpful

  • @emoji4652
    @emoji4652 3 месяца назад

    Bro ❤ that's so better than 200 usdt lectures

  • @I_Anupam_Pandey
    @I_Anupam_Pandey Год назад

    amazing explaination sir please complete the playlist and make yolo v5,v6,v7 also

  • @karthickmurugan8478
    @karthickmurugan8478 2 месяца назад

    Is anchor boxes are created based on grid.. means the center of anchor will be in the selected grid?

  • @Pikachu_rat
    @Pikachu_rat Год назад

    your videos are extremely informative. Thank you very much.

  • @The_big_shot614
    @The_big_shot614 10 месяцев назад +2

    genius bro

  • @NandiniJain-j8g
    @NandiniJain-j8g 8 месяцев назад +1

    Please make a video on v5 v6 v7 v8 v9 as well

  • @tubercn
    @tubercn Год назад

    Thanks for your explain, but i have a question on the Total loss Function , what the 1MaxIOU

  • @neha280790
    @neha280790 Год назад +1

    Wonderful videos sir. Great explanation.
    I've just started learning yolov7 and referring your videos for the base knowledge.
    I just want to know do i need any specific gpu for experimenting yolov7 or collab gpu will work?

    • @MLForNerds
      @MLForNerds  Год назад

      Collab Gpu should work fine. Usually they’re T4 Gpus of 16GB.

  • @Raj-xz4vz
    @Raj-xz4vz Год назад +1

    If we have only convolution layer then how it helps?? like how grid cell and bounding box number can be increased

  • @kagadevishal5008
    @kagadevishal5008 10 месяцев назад +1

    what a excellent explanation. From where you got the in-depth information.

    • @MLForNerds
      @MLForNerds  8 месяцев назад +1

      Glad you liked it. I look into source code from github and match it with paper.

    • @kagadevishal5008
      @kagadevishal5008 8 месяцев назад +1

      @@MLForNerds are you going to make videos? Or you left RUclips?

    • @MLForNerds
      @MLForNerds  8 месяцев назад +1

      I will restart making in few days. I stopped making because of personal commitments. Thanks for staying back with the channel, I appreciate your patience🙂

  • @enghosamnima84
    @enghosamnima84 Год назад

    Thank you for the greate explanation. Could you please share the slides?

  • @noahzhou979
    @noahzhou979 Год назад +1

    this is awesome !

  • @MuhammadAltaf146
    @MuhammadAltaf146 Год назад +1

    Wonderful tutorials. I couldn't find the slides for Yolo V2 in the repository. Can you please check/upload them?

    • @MLForNerds
      @MLForNerds  Год назад

      That ppt is taking more space and I couldn't upload directly via browser. Will upload through git commands.

    • @I_Anupam_Pandey
      @I_Anupam_Pandey Год назад

      can you please share github repository link?

  • @pavanKUMAR-tt4jt
    @pavanKUMAR-tt4jt Год назад +3

    Amazing explanation please explain yolo v7

  • @youneskhafaja5937
    @youneskhafaja5937 Год назад +2

    good explanation

  • @syedmoiezullahbukhari2676
    @syedmoiezullahbukhari2676 4 месяца назад

    thank you i could have nerver learn and understand any better then your video

  • @adithyahegdekota2586
    @adithyahegdekota2586 Год назад +1

    Is there a link for code to develop YOLO from scratch for a custom dataset I know I can use the one in Github but I want to learn about the concept in depth So can U help me with the code part