Can you find area of the Blue Portion? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 6 фев 2025

Комментарии • 10

  • @juanalfaro7522
    @juanalfaro7522 Месяц назад +1

    I got the same answer. Let F be midpoint CE -> CF=100/82=50 --> AD = √ (150^2 + (50√3) ^2) = 100√3 --> tan (DAE) = 50√3/150 = √3/3 --> ADE=30 --> FDA = 90-30 = 60. But CDE equilateral ---> ,FDE = 60/2 = 30 --> ADE = 60+30 = 90 ---> ADP] = AD*DP/2. Now DP = DE/2 = 100/2 = 50 ---> [ADP] = 100√3 * 50/2 = 2500√3 = 4330 mm^2.

  • @matthieudutriaux
    @matthieudutriaux Месяц назад +2

    1/2*200*100*sqrt(3)/2-1/2*200*100*sqrt(3)/4=2500*sqrt(3) mm²

  • @marioalb9726
    @marioalb9726 Месяц назад +2

    Angle ADE = 90°
    b = DP = 200/4 = 50 mm
    h = AD = 200 cos30° = 100√3 mm
    A = ½b.h = ½ 50 100√3
    A = 2500√3 mm² ( Solved √ )

  • @ediosantos1420
    @ediosantos1420 Месяц назад +1

    Brasil

  • @murdock5537
    @murdock5537 Месяц назад +1

    way too complicated: same base, same height = same area 🙂
    φ = 30° → sin⁡(3φ) = 1; AE = 4a = 200mm → a = 50mm
    BAC = ACB = DCE = CED = 2φ; DE = 2a = DP + EP = a + a
    sin⁡(EDA) = 1 → DAE = φ → DA = 2a√3 = h →
    area ∆ AEP = area ∆ APD = (1/2)area ∆ AED = a^2√3 ≈ 4330(mm)^2
    btw: PAE = α → sin⁡(α) = √39/26; DAP = β → sin⁡(β) = √13/13

    • @MathandEngineering
      @MathandEngineering  Месяц назад +1

      @murdock5537 hmmmmm. So you chose to find an answer whose percentage error is 0. This is good an perfect. Thanks for sharing