Can you find area of the Blue triangle? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 6 фев 2025

Комментарии • 4

  • @matthieudutriaux
    @matthieudutriaux Месяц назад +1

    Here is a simpler method :
    0:00 to 2:42 same method than you to find a=b ; angle (PEQ)=angle (QER)
    Let's call angle (RED)=c
    Then, angle (BCE)=90°+c and angle(BAE)=90°-(c+2*b)
    Law of sinuses in triangle BCE :
    BC/sin(angle(QER))=BE/sin(angle(BCE))
    BC/sin(b)=BE/sin(90°+c)
    8*k/sin(b)=BE/cos(c)
    Law of sinuses in triangle BAE :
    AB/sin(angle(PEQ))=BE/sin(angle(BAE))
    AB/sin(b)=BE/sin(90°-(c+2*b))
    10*k/sin(b)=BE/cos(c+2*b)
    (8*k/sin(b))/(10*k/sin(b))=(BE/cos(c))/(BE/cos(c+2*b))
    4/5=cos(c+2*b)/cos(c)
    EP=ED*cos(c+2*b)
    ER=ED*cos(c)
    EP/ER=cos(c+2*b)/cos(c)
    EP/ER=4/5
    Then, same method than you, from 10:50 to the end.
    A|EPQ|=1/2*EQ*EP*sin(b)
    A|EQR|=1/2*EQ*ER*sin(b)=200 cm²
    A|EPQ|=EP/ER*A|EQR|=4/5*200=160 cm²

  • @jimlocke9320
    @jimlocke9320 21 день назад

    Special case: Let CD = 0. C, D, and R become the same point, let's call it R. All linear dimensions are units of k. Early in the video, we find that

  • @gregevgeni1864
    @gregevgeni1864 Месяц назад

    Nice problem!