A Very Nice Geometry Problem | 2 Different Methods

Поделиться
HTML-код
  • Опубликовано: 15 ноя 2024

Комментарии • 22

  • @RAG981
    @RAG981 2 дня назад +5

    Your second method seemed wild, but it is brilliant.

  • @prossvay8744
    @prossvay8744 День назад +2

    Area of ABED1=1/2(3√3-3+6)(3√3-3)=9

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 2 дня назад +3

    Let's assume that the length of the side of the square is x so tan(30)=x/(6-x)=1/√3, so x=3√3-3, and the area of the quadrilateral ABDE is (3√3-3+6)*((3√3-3)/2=9

  • @kateknowles8055
    @kateknowles8055 2 дня назад +1

    Tan 60° = 3^½ = the square root of three CE = BC × tan 60º = BC × 3^½ DE = 6 = BC + CE = (1+3^½)BC
    so BC = 6/(1 + 3^½) = 6 (3^½-1)/(3^½-1)(3^½+1) = (3^½-1)×6/(3-1) =3×(3^½-1)
    ½×(DE+AB)×BC = area of this trapezium. This is ½×3× ( 3^½ +1)×(3 ×( 3^½ -1))= ½×3×3 ×(3-1) = 3×3 =9
    ABED has an area of 9 square units.
    Thank you for the puzzle and your solutions.

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 дня назад +1

    Let side of square = a then
    a+a√3 = 6
    a = 3(√3-1) = 3√3-3
    Area of trapezium = (6+3√3-3)(3√3-3)/2 = 9

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n 2 дня назад +4

    The first method was easy but the second method was amazing! I love this problem!

    • @michaeldoerr5810
      @michaeldoerr5810 День назад +1

      I really agree. I thought that the second method was just more of a proof of the Pythagorean Theorem. And the answer is x =9 units.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 часа назад

    Rt 🔺 BEC is a 30-60-90 triangle.
    BC is opposite to 30 degree angle.
    Hence if BC is x
    then angle opposite to 60 degree angle will be x √3
    The sides of the square is x
    Now
    x + x √3 =6
    > x =6/(1+√3)=2.196 (approx)
    Area of Trapezium
    = 1/2*(6+2.196)*2.196
    =8.196/2 *2.196 = 4.098 *2.196= 8.9992 sq units (approx)

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 День назад +1

    The second method is something... Great!

  • @saronohandoyo4958
    @saronohandoyo4958 2 дня назад +1

    i use your 1st method for solution, but your 2nd method is cooler n mind blowing

  • @quigonkenny
    @quigonkenny 2 дня назад +1

    Let x be the side length of square ABCD. As ∠CFB = 30° and ∠BCF = 90°, ∆BCF is a special 30-60-90 right triangle and as BC = x, CE = √3x.
    √3x + x = 6
    (√3+1)x = 6
    x = 6/(√3+1)
    x = 6(√3-1)/(√3+1)(√3-1)
    x = 6(√3-1)/(3-1) = 6(√3-1)/2
    x = 3(√3-1)
    Trapezoid ABED:
    A = h(a+b)/2
    A = 3(√3-1)(3(√3-1)+6)/2
    A = (3√3-3)(3√3-3+6)/2
    A = (3√3-3)(3√3+3)/2
    A = (27-9)/2 = 18/2 = 9 sq units

  • @marioalb9726
    @marioalb9726 2 дня назад +2

    tan 30° = s / (6-s)
    s = (6-s) tan30 = 6/√3 - s/√3
    s+s/√3 = 6/√3
    s (1+1/√3) = 6/√3
    s = 6/[√3(1+1/√3)] = 6/(√3+1)
    s = 2,196 cm
    A = s² + ½ s (6-s) = ½s² + 3s
    A = 9 cm² ( Solved √ )

  • @Emerson_Brasil
    @Emerson_Brasil 2 дня назад +1

    *Solution:*
    Let AB=BC=DC=AD=x.
    [ABED] = [ABD] + [DBE]
    *[ABED] = x.x/2 + 6.x/2 = x²/2 + 3x*
    Now, BE = BC/sin 30°= 2x and, Furthermore, BD=x√2.
    By the law of cosines ∆BED:
    BD² = BE² + DE² - BE× DE×cos 30°
    (x√2)² = 6² + (2x)² -2.6.2x.√3/2
    2x² = 36 + 4x² - 12√3 x
    2x² - 12√3 x + 36 = 0 (÷2)
    x² - 6√3 x + 18 = 0
    ∆ = (-6√3)² - 4 × 18 = 108 - 72 = 36
    x = (6√3 ± √∆)/2 = (6√3 ± 6)/2
    x = 3√3 ± 3, as BE < DE, i.e., x < 3. Therefore,
    *x= 3√3 - 3.* Like this,
    [ABED] = x²/2 + 3x
    [ABED] = (3√3 - 3)²/2 + 3(3√3 - 3)
    [ABED] = 9(√3 - 1)²/2 + 9(√3 - 1)
    [ABED] = 9(4 - 2√3)/2 + 9(√3 - 1)
    [ABED] = 9(2 - √3)+ 9(√3 - 1)
    [ABED] = 9(2 - √3 + √3 - 1)
    *[ABED] = 9 square units*

  • @wasimahmad-t6c
    @wasimahmad-t6c 2 дня назад

    4×2÷2+2×2=8

  • @AmirgabYT2185
    @AmirgabYT2185 2 дня назад +1

    S=9

  • @yakupbuyankara5903
    @yakupbuyankara5903 2 дня назад

    9

  • @ZiaTiger-j9r
    @ZiaTiger-j9r 2 дня назад

    Mistake.3 into under root 3 minus 1 😂you can check

    • @MathBooster
      @MathBooster  2 дня назад +2

      Under root 3 minus 1 is in bracket so if you multiply it with 3 then it will become 3 times under root 3 minus 3

    • @MegaSuperEnrique
      @MegaSuperEnrique Час назад

      At 3:30, he is rationalizing the denominator, so he multiplied top and bottom so that the denominator wouldn't have a radical (root) in it.

  • @adamhanna9940
    @adamhanna9940 16 часов назад

    Your solution is unnecessary, long excessively, you just need to elongate the time of your presentation. All what you should do: is to put the dimensions of the right angle triangle as : x (opposite to 30), square of 3. X to the adjacent and the hypotenuse = 2x. Therefore :
    x +square root of (3).x =6 ..(1)
    That gives:
    x^2= 18(2-square root(3))
    A=
    x^2 +(square root(3)/2.(x^2) =9 square units