Это видео недоступно.
Сожалеем об этом.

Find the sum of first n squares, difference equation approach, (ft. Max!)

Поделиться
HTML-код
  • Опубликовано: 9 сен 2017
  • Check out Max's Channel for more interesting math topics! • There Exists Two Irrat...
    Find the sum of first n^2, ft. Max!
    find 1^2+2^2+3^2+...+n^2,
    difference equation,
    1^2+2^2+3^2+...+n^2 formula,
    1+2+3+...+n formula,
    find the sum of first n squares,
    find the sum of first squares of n,
    sum of the first n natural numbers,
    series of n^2,
    blackpenredpen,
    math for fun,

Комментарии • 347

  • @nathanielsharabi
    @nathanielsharabi 7 лет назад +330

    Loool dr payem in the end just sitting in the chair like a student

    • @leytonzhang5607
      @leytonzhang5607 6 лет назад

      Student of the game

    • @holyshit922
      @holyshit922 4 года назад +1

      Title lies possible viewers solution presented here has nothing to do with difference equation approach
      He used perturbation the sum, not difference equation approach

    • @kalasharma7737
      @kalasharma7737 3 года назад

      Agar bich mai multiply sign ho to or sabbi no. square ho to kya kre

  • @unknownnepali772
    @unknownnepali772 5 лет назад +107

    The most beautiful thing is (1+2+3+4+........n)^2=(1^3+2^3+3^3+.......n)

    • @viewer4229
      @viewer4229 5 лет назад +5

      Yes, it is!

    • @ashagodha3630
      @ashagodha3630 4 года назад +4

      Yes dude the formula for Sum of squares of n natural numbers is equal to the square of the formula for finding the sum of n natural numbers

    • @Walczyk
      @Walczyk 3 года назад +9

      @@ashagodha3630 no sum of cubes

    • @johnjordan3552
      @johnjordan3552 3 года назад +1

      what is this correct?

    • @Inspirator_AG112
      @Inspirator_AG112 3 года назад +2

      Is this a coincidence?

  • @MG-hi9sh
    @MG-hi9sh 3 года назад +123

    The only thing I'm wondering, though, is how would someone come up with using that formula? How would one figure that out? I feel like it would potentially be difficult.

    • @mathieumourey8594
      @mathieumourey8594 3 года назад +9

      he can make a conjecture and prove it by recurrence

    • @MG-hi9sh
      @MG-hi9sh 3 года назад +7

      @@mathieumourey8594 Maybe, but what would you base the conjecture on?

    • @burningMallowz
      @burningMallowz 3 года назад +8

      I believe they used the binomial expansion theorem to find out that telescoping sum. Whats amazing about using this method is that...you can pretty much know the sums 1^k + 2^k + ... + n^k, for some k is an integer! Check Mathologer's masterclass on the topic.

    • @burningMallowz
      @burningMallowz 3 года назад +2

      @@MG-hi9sh The masterclass is a bit long, about an hour. But it'll be worth it!

    • @MG-hi9sh
      @MG-hi9sh 3 года назад +5

      @@burningMallowz Hey, thanks mate! I’ll give that a try some time. Unfortunately, I have an exam tomorrow, so I can’t look at it today. 😔
      I do find these expressions for summations up to the nth term very interesting.

  • @tf.6382
    @tf.6382 5 лет назад +39

    I had to memorize this rule but I didn't know how it works. Today I finally understand that. Thank you.

    • @MG-hi9sh
      @MG-hi9sh 3 года назад

      I know, I'm so glad I found this. That proof was stunning.

    • @ugestacoolie5998
      @ugestacoolie5998 Год назад

      me too man, the book I had just threw the conclusion to me

  • @assiddiq7360
    @assiddiq7360 3 года назад +15

    I remember doing this. From S1 to S5, I used Pascal Triangle.
    But at S6, Pascal Triangle alone can't create the equation, or at least it will take a very long time. So I manage to find a pattern for Sn, with Pascal Triangle, I solve for S6 and S7.
    When I was doing S8, I discover that I can use many (n²+n) to make things easier. With Python, S8 and S9 are done.
    Weeks later, I continue for S10 and S11, but this time with really big simultaneous equations (slowly but surely).
    I stopped at S11, because I don't see anymore pattern of the equations for Sn.
    Pattern found:
    • S1 is factorisable on all Sn, n≥1,
    S2 is factorisable on all Sn, n is even, S3 is factorisable on all Sn, n is odd.
    • Factorising 2n+1 on all Sn, n is even, the leftovers can be expressed with n²+n, without leaving any n alone.
    • After expanding everything, the term with the largest power of n for Sa is (n^(a+1))/(a+1).

  • @MrCentrax
    @MrCentrax 5 лет назад +10

    GOD finally a good video on the subject, thanks a lot! you explained it very clearly

  • @JM-us3fr
    @JM-us3fr 7 лет назад +8

    Wow, this derivation would have saved me a lot of trouble had I known about it. Thanks for showing this!

  • @patricksile
    @patricksile 6 лет назад +17

    Amazinnnnng, Have been looking for a demonstration of this for weeks now, while wolframathalpha will just spit the solution.

  • @bingodeagle
    @bingodeagle 6 лет назад +9

    This guy is really cool I'd like to see more videos with him

  • @af8811
    @af8811 5 лет назад +2

    Oh my.....
    This is what i have been looking for so longgggg. Thank you BlackpenRedpen

  • @assassin01620
    @assassin01620 5 лет назад +4

    I'll admit, I've never seen any of Dr. Payem's videos, but I love him every time he shows up in bprp's videos! XD

  • @el-mudito9998
    @el-mudito9998 7 лет назад +3

    I love these series videos!! They're awesome

  • @tanmacre
    @tanmacre 7 лет назад +32

    Yei!! .. One of my favorite subjects, hope see it soon in my career and more vídeos of its. LoveIt!

    • @blackpenredpen
      @blackpenredpen  7 лет назад +7

      same here!!! I have a few more coming.

    • @tanmacre
      @tanmacre 7 лет назад +4

      (Yeeei!!)x2 I wanna it soon. Greats from Colombia :)

    • @MathForLife
      @MathForLife 7 лет назад +3

      Yeah, I love series, it's amazing math concept that shows really important relations:)

  • @stevenbooke8594
    @stevenbooke8594 4 года назад +9

    How did max know to use (n + 1)^3 - n^3? The whole derivation seems quite dependent on that.

    • @bossdelta501
      @bossdelta501 Год назад +2

      it is one way to solve it, you often look for telescopics on sums so you can get rid of alternating terms and get something that you want. in this case the n^2 terms, you can apply the same concept to find a formula for the n^3 sum

    • @leif1075
      @leif1075 9 месяцев назад

      ​​@@bossdelta501but it still comes out of.nowhere and there are no alternating terms in the sum 1^2 + 2^2...+ n^2 so there is NO REASON I can see to think of cubes at all, wouldn't you agree?

  • @Inspirator_AG112
    @Inspirator_AG112 3 года назад +12

    There is a tiling proof for n(n+1)(2n + 1)/6! If you can stack squares, with the smaller ones towards the corner. This can be done in Blender, Minecraft, or Tinkercad. You can also use Lego or Snap Cubes to do this. It is possible to tile 6 identical copies of these stair shapes into an (n) by (n + 1) by (2n + 1) block.

    • @Avighna
      @Avighna Год назад

      Hey, if you don't mind, we'd appreciate a link!

  • @af8811
    @af8811 5 лет назад

    I love your channel, since i just found it couple days ago. say hi to you. I'm just an admirer of math, and a math and physic private teacher for senior hi-school. Surely it's my pleasure to watch your channel here. Somehow i feel like being on a joyfull travelling when see or solve math cases. I am lovin' it. Thank God i've found this channel. And i like the way you give explanation, the way you speak. Keep it going Bro BlackpenRedpen. ☺☺☺☺👍👍👍👍👍👍👍👍👍

  • @ebf1026
    @ebf1026 5 лет назад

    Great work 💙✌
    Keep it up

  • @vishalmankar4969
    @vishalmankar4969 4 года назад +1

    Thanks for giving such type of explanation...it helps me so much.

  • @name9048
    @name9048 4 года назад

    Good video. Appreciate your efforts and willingness to share knowledge

  • @masrukhinmath8879
    @masrukhinmath8879 4 года назад

    Good.....mantaaap...hebaattt

  • @Wulfhartus
    @Wulfhartus 5 лет назад +1

    niiice
    I was looking for a nice evaluation of this sum

  • @johnbennett834
    @johnbennett834 5 лет назад

    I watched this last year but, I am revisiting because it came up again! thanks.

  • @chessandmathguy
    @chessandmathguy 7 лет назад +2

    very very cool. always wondered how that formula was derived and why it works. this perfectly satisfies my curiosity. thank you!!

    • @chessandmathguy
      @chessandmathguy 4 месяца назад

      agreed. just the comment I was looking for.

  • @AgentOrange329
    @AgentOrange329 5 лет назад +6

    I have always been trying to derive power formulas by myself to challenge myself, but I couldn't find a nice and neat way to derive the sum of squares. This is a very interesting method, very nice :)

    • @sophiedavidson1579
      @sophiedavidson1579 2 года назад

      Khan Academy have clear explanations of this sum. :)

    • @peamutbubber
      @peamutbubber 9 месяцев назад

      It's ez to prove tbh

    • @leif1075
      @leif1075 9 месяцев назад +1

      ​@@peamutbubberbut how. It's not at all ez to derive..proving is not a simportatn..indont see why anyone would thinknof difference of twomcubes?

  • @yogendrasinghjadon3
    @yogendrasinghjadon3 5 лет назад

    Keep it going bro you are too good

  • @griffithnewman4615
    @griffithnewman4615 2 года назад +1

    There is an alternative way of doing this that takes less time for x^k, you can show by bring the differences of these functions (x + 1)^k - x^k and taking the differences of that until it's a constant, taking every term till it's a constant and it will mimic how long it takes for a polynomial to go to a constant this same way. Theres more too this that is hard to fit into a comment but you can take k + 1 terms to the summation of x^k from 1 to n in regression (plugging the x and y values in for each and solving the variable system), this generates the coefficents and makes the polynomial function.

  • @madhupramod
    @madhupramod 5 лет назад

    thanks for explaining! this is great!

  • @arraysstartat1616
    @arraysstartat1616 7 лет назад +45

    Really liked this video. Love the guest speakers!

    • @blackpenredpen
      @blackpenredpen  7 лет назад +3

      arraysstartat1 thank you!!! I will have more in the future!

  • @alexandersanchez9138
    @alexandersanchez9138 7 лет назад +1

    In case anybody is wondering, the general formula is kind of a nuance, but it can be compactly written in a way such that a computer would be able to compute it. For example, if S_k(n) is the sum of the first n integers raised to the kth power, then:
    S_k(n) = {n^(k+1) - sumj_(1, n) [(-1)^(k-j) * (k+1 chose j) * S_j(n)]}/(k+1)
    ^^^That would pretty much be the majority of the code necessary for, say, Haskell to compute your value. If you're using something stronger, like Mathematica, then I'm sure this forumla is already in a library somewhere.

  • @vuyyurisatyasrinivasarao3140
    @vuyyurisatyasrinivasarao3140 4 года назад

    Super.....explanation nice simple....good.....great sir

  • @zavionw.8052
    @zavionw.8052 5 лет назад +16

    Guys I think I've found the pattern!
    S(0) = n
    S(1) = [n(n+1)]/2
    S(2) = [n(n+1)(2n+1)]/6
    S(k) = {n[n+1][2n+1]...[(k-1)n+1][kn+1]}/(n+1)!
    So I think the sum of all n cubes will be (n)(n+1)(2n+1)(3n+1)/24
    love your videos, bprp :3
    (P.S. at the time of this comment, I'm 12)

    • @jcb3393
      @jcb3393 4 года назад +9

      @Zavion W. / BlockyKirby314
      unfortunately, this does not hold.
      sum of cubes from 1 to 2 = 1^3 + 2^3 = 1 + 8 = 9.
      if we plug in n=2 into your formula, we get 2(3)(5)(7)/24 = 35/4.
      Close, but no banana.
      Keep at it, though. At 12, you've got a world of mathematics magic ahead of you. Enjoy the ride!

    • @zavionw.8052
      @zavionw.8052 4 года назад +3

      @@jcb3393 Thank you very much! It's good to know that at least I was close lol 😅
      I turned 13 in December btw 😃👍

    • @phucl.nguyen5168
      @phucl.nguyen5168 4 года назад

      @@zavionw.8052 So what? What do you mean by adding how old you are in here? Is it relating to the question? Or you just wanna show up sth? Be humble boy, there are millions of geniuses out there who younger than you are. Stay hungry stay foolish!

    • @OriginalEch3Official
      @OriginalEch3Official 4 года назад +1

      @@phucl.nguyen5168 dam relax dude. hes just a kid that feels proud. he doesnt always have to feel like trash bcuz others are better than him. wonder what ur childhood was like...

    • @parthanaved3866
      @parthanaved3866 4 года назад

      @@OriginalEch3Official Ofc thats true. I mean, he can do good when he's 12. He can't like change the past honestly. He has to accept his past and move on and try to do better. Who knows? maybe he'll end up doing something great!

  • @josda1000
    @josda1000 7 лет назад +2

    Dude, awesome job :)

  • @tamizhtamizh412
    @tamizhtamizh412 4 года назад

    Dude.. Awesome 👌

  • @sergioh5515
    @sergioh5515 7 лет назад +52

    Simply stunning :) it is beautiful and elegant the way he derived the summation formulas 😶

    • @blackpenredpen
      @blackpenredpen  7 лет назад +14

      Yea!!! Dr. Peyam and I liked it very much too.

    • @muralinagarajan8305
      @muralinagarajan8305 4 года назад +3

      @@blackpenredpen , I am a math grad myself, but what amazes / mystifies me about the proofs / derivations of mathematical many results is, how in the world do you START ?? And having started, how do you PROCEED !! I mean - just how do you know what expressions you have to manipulate and how do you know how to manipulate ?? I learnt to "prove" these two results by using principle of mathematical induction. And these algebraic proofs [esp., the second one ] are totally amazing !! For example, how did you know that if you re-wrote S as n +(n-1) +(n-2) +...2 +1, it would help you later ?? Okay, forget this - this atleast is only one step away from what you want to find out. In the second part,, how did you know you had to manipulate (m+1)^3 - m^3 ?? The expression you are trying to evaluate is too far from where you started !! NONE OF MY PROFESSORS / LECTURERS HAVE BEEN TO ABLE TO QUELL MY AMAZEMENT - in fact, I get snubbed [by even fellow students] for "wasting time" !!

    • @leif1075
      @leif1075 4 года назад

      @@blackpenredpen yea but whonwould ever think of doing this?? I hope you can please please respond and tell me.this is not intuitive or logical at all..

    • @leif1075
      @leif1075 4 года назад

      @@muralinagarajan8305 exactly this is not intelligent or logical or intuitive no NO ONE WOULD EVER THINK TO DO THIS to prove it..so gow would someone really. If no one showed you how..not even Ramanujan or me or somebody would think of that

    • @jorgealexandre4616
      @jorgealexandre4616 3 года назад +1

      ​@@muralinagarajan8305 Oh, that's simple. These things happen because, has you go through your daily routines, you might get lost inside your mind. You might think that you're only ever doing math when, you know, you have a piece of paper and is actly doing math. That couldn’t be fader from the truth. If one has a really playful mind and a sense of creativity, even as you step back from a problem, if you weren’t able to solve it immediately, your mind might be still processing it on the background. If you go back to the problem later, you may carry with you a new, fresh perspective. If you are really creative and really knows how to exploit this system to it's logical extreme, people can come up with really intelligent unexpected solutions. So these incredible proofs are, really, at their core, a feat of creativity by persons way more ingenious than you and me. Let me tell you, a big reason why people can get such staggering results is that their subconscious mind do half the job for then.
      In other word, what I'm saying is, beyond being incredible logical feats on their on, they're also displays of amazing creativity. Be warned: math can be also a form art sometimes.

  • @md.ayaanahmed5152
    @md.ayaanahmed5152 3 года назад +1

    This was given in Class 11th NCERT
    You explained it awesome

  • @MrCigarro50
    @MrCigarro50 5 лет назад

    Great video. Thank you very much.

  • @emirhanzengin6871
    @emirhanzengin6871 7 лет назад +1

    Very different point of view thanks

  • @alwysrite
    @alwysrite 7 лет назад +2

    very well explained.

  • @Ali27819
    @Ali27819 7 лет назад +10

    Amazing

  • @biplavosti1382
    @biplavosti1382 4 года назад +2

    aah old memories of arithmetric progression and series came in mind. Learned this when i was in class 9. I remember finding out the sum of cubes of n number by same method. That was amazing. I thought I discovered something. Hahaha.

  • @SheikhAhmadShah
    @SheikhAhmadShah 4 года назад

    Really excellent...

  • @shreyaskhanvilkar6393
    @shreyaskhanvilkar6393 Год назад

    Thank you for sharing the logic behind this video

  • @lalitverma5818
    @lalitverma5818 6 лет назад +2

    So nice derivation to find sum of square natural no series... Thanks

  • @Liesse_SportSante
    @Liesse_SportSante 5 лет назад

    Excellent video !

  • @AnthonySpinelli-fe4vn
    @AnthonySpinelli-fe4vn 3 года назад +5

    I think it’s very interesting that S4 (sum of finite cubes) is the formula for S2 just squared.

    • @Ruben-ho9jd
      @Ruben-ho9jd 7 месяцев назад

      I found it to be -1/30(n) + 1/3(n^3) + 1/2(n^4) + 1/5(n^5) using matrices and reduced echelon form.

  • @holyshit922
    @holyshit922 7 лет назад +1

    Interpolation, recurrence relation with generating functions, using differences (discrete version of calculus),

  • @estuardodiaz2720
    @estuardodiaz2720 7 лет назад +5

    Very cool! Is there a general formula for any k? Or even further, an extended formula for any k being a real number?? @blackpen

    • @estuardodiaz2720
      @estuardodiaz2720 7 лет назад

      I've just realized that this is somehow related to the Riemann zeta function... It has 'almost the same form' if n goes to infinity (for the part that is not an analytic continuation).

    • @justanormalyoutubeuser3868
      @justanormalyoutubeuser3868 3 года назад

      Idk if it holds for every k but I think I spot a pattern.
      For k=0, n(0n+1)/1
      For k=1 n(0n+1)(1n+1)/1*2
      For k=2 n(0n+1)(1n+1)(2n+1)/1*2*3
      If I am right every time k increases by 1 you multiply by (kn+1)/(k+1).
      I honestly don't know about real k

  • @jorgma6507
    @jorgma6507 4 года назад

    Great one!

  • @satyapal8594
    @satyapal8594 4 года назад

    Nice video 👌👌👍👍

  • @amritkumarpatel5717
    @amritkumarpatel5717 3 года назад

    it helped me a lot

  • @louisthurston3067
    @louisthurston3067 6 лет назад +3

    This has all been formalized in the calculus of finite differences, a subject that is powerful and beautiful but is little known.

    • @manuelkarner8746
      @manuelkarner8746 3 года назад

      or in this topic = book = Concrete Mathematics_ A Foundation for Computer Science

  • @matheuseigmo3075
    @matheuseigmo3075 3 года назад

    thank you very much from Algeria.

  • @euva209
    @euva209 2 года назад

    Beautiful!!!

  • @ellyich1405
    @ellyich1405 5 лет назад

    Thank you
    It helped a lot

  • @ozymandias8523
    @ozymandias8523 Год назад

    I prefer the khan academy method about patterns of patterns and ended up like 2/6 n'3 + 3/6 n'2 + 1/6 n , which is the known formula of: n(2n+1)(n+1)/6. I like it because youdont need to know anything other formula like this video.

  • @jemcel0397
    @jemcel0397 7 лет назад +2

    Great to see more Penny!!

    • @blackpenredpen
      @blackpenredpen  7 лет назад

      Penny? U mean Peyam?

    • @jemcel0397
      @jemcel0397 7 лет назад

      blackpenredpen No. Not him. You! I coined Penny from your username BlackPenRedPen

    • @blackpenredpen
      @blackpenredpen  7 лет назад

      OH! I see, lol.
      So, instead of Pen, it's Penny?

    • @jemcel0397
      @jemcel0397 7 лет назад

      blackpenredpen indeed!

    • @blackpenredpen
      @blackpenredpen  7 лет назад +1

      Ah, I see!

  • @paulfaigl8329
    @paulfaigl8329 4 года назад

    Great! Thanks guys!

  • @paradox6647
    @paradox6647 10 месяцев назад +1

    I wonder if there’s a derivation for a general formula for S_k

  • @omarathon5922
    @omarathon5922 7 лет назад +1

    This is great

  • @mrteddy808
    @mrteddy808 7 лет назад +1

    I'm not sure I understand this method, but I think it is similar to what we learnt for sigma notation. Nevertheless, great video.

  • @MsLinaliana
    @MsLinaliana 7 лет назад +2

    It's very cool!

  • @sergiokorochinsky49
    @sergiokorochinsky49 7 лет назад +2

    Below you will find the Mathematica line to calculate the coefficients for the first 10 polinomials:
    Inverse[Table[If[m>n-1,0,Binomial[n,m] (-1)^(n+m+1)],{n,1,k},{m,0,k-1}]/.k->10]//MatrixForm

  • @MamboBean343
    @MamboBean343 7 лет назад +40

    What if k=n?
    So 1^n+2^n+3^n+…+n^n = ?

    • @KeyMan137
      @KeyMan137 7 лет назад +10

      www.wolframalpha.com/input/?i=Sum+from+1+to+n+of+k%5En
      See here: en.wikipedia.org/wiki/Faulhaber%27s_formula#Examples

    • @brae.2401
      @brae.2401 6 лет назад

      MamboBean
      (n(n+1)(2n+1)(3n+1)(4n+1)... (n^2+1))/n!
      I think
      Could also maybe be:
      (n(1!n+1)(2!n+1)(3!n+1)... (n!n+1))/n!

    • @omerresnikoff3565
      @omerresnikoff3565 6 лет назад +2

      It's called Faulhaber Formula, look for it!

    • @student6830
      @student6830 5 лет назад +1

      You use the same method. If you watch his video on deriving the sum of cubes, it'll all make sense.

    • @adrianoseresi3525
      @adrianoseresi3525 3 года назад

      ruclips.net/video/fw1kRz83Fj0/видео.html

  • @mrhatman675
    @mrhatman675 3 года назад +1

    I actually found another elegant way you can find the second sum in the video a little bit more complicated if C is our second sum of n numbers squared basically if you take the differemce of a number squared minus it s former squared except for 1 you actually see this for example 2squared -1squared=3 also 3squared-2squared=3+2 4squared-3squared=3+4 5squared-4squared=3+6 now if we set a=3 for convension purposes and solve for its number we will see this 2squared=a+1 3squared=2a+3 4squared=3a+7 so if C=1+2squared+3squared...nsquared=1+a+1+2a+3+3a+7+4a+13... now if A=the first sum of the video then C=1+a+1+2a+3+3a+7+4a+13...=1+a(A-n)+1+3+7+13...=1+a(A-n)+1+(1+2)+(1+2+4)+(1+2+4+6)... now we can clealry see a pattern 1+a(A-n)+1×(n-1)+2×(n-2)+4×(n-3)+6×(n-4)...=n+a(A-n)+2×(n-2+2×(n-3)+3×(n-4)+4×(n-5)...) now is the very tricky part that need you need to pay very much attention or you will get lost we know that n-2+n-3+n-4+n-5...=A-n-(n-1)lets name this B then n+a(A-n)+2×(n-2+2×(n-3)+3×(n-4)+4×(n-5)...)=n+a(A-n)+2(B+B-(n-2)+B-(n-2)-(n-3)+B-(n-2)-(n-3)-(n-4)...)=n+a(A-n)+2((n-2)×B-(n-2)×(n-3)-(n-3)×(n-4)-(n-4)×(n-5)...)=n+a(A-n)+2((n-2)×B-(n-2)×(n-2-1)-(n-3)×(n-3-1)...) now if we get rid of the brankets something magical happens n+a(A-n)+2((n-2)×B-(n-2)×(n-2-1)-(n-3)×(n-3-1)...)=n+a(A-n)+2×((n-2)B-(n-2)squared+n-2-(n-3)squared+n-3-(n-4)squared+n-4...) but we know that C=nsquared+(n-1)squared+(n-2)squared... and B=n-2+n-3+n-4+n-5... this means that n+a(A-n)+2×((n-2)B-(n-2)squared+n-2-(n-3)squared+n-3-(n-4)squared+n-4...)=n+3A-3n+2((n-2)B+B-C+(n-1)squared+nsquared)= n+3A-3n+2((n-2)B+B-C+(n-1)squared+nsquared)=-2n+3A+2×(n-1)B-2C+2(n-1)squared+2nsquared now lets replace our varyables -2n+3A+2(n-1)(A-(n-1)-n)-2C+2(n-1)squared+2nsquared=-2n+3A-2(n-1)squared-2n(n-1)+2(n-1)A+2nsquared+2(n-1)squared-2C=-2n+3A+2nsquared-2nsquared+2n+2(n-1)A-2C=3A-2A+2nA=A×(2n+1)-2C but since this is C then 3C=A×(2n+1) C=A×(2n+1):3=n×(n+1)÷2×(2n+1)÷3=n×(n+1)×(2n+1)÷6 and there you go trust me it s much more easyer on paper also let me know if this proof actually exists cause I figured it out myself

  • @ophello
    @ophello 7 лет назад +6

    Yes but what's the general form for any exponent?

  • @Koroistro
    @Koroistro 5 лет назад +1

    There are more methods to prove this, when I proved this to myself I used the fact that (1+3)=2^2 (1+3+5)= 3^2, generalized it's the partial sum of the odd numbers up to the i-th number of i^2 (odd1+odd2+odd3+....+oddi)=i^2, the rest is trivial because you have n + 2(n-1) + .... + n(n-(n-1)) + n(n-n).

  • @anuragshukla669
    @anuragshukla669 4 года назад

    I loved it.... great... love from india..😍😍

  • @AllanPoeLover
    @AllanPoeLover 4 года назад

    天啊這個 Maks 的英文我真的聽得懂耶
    黑紅筆抱歉了 我其實常聽不清楚你的英文, 雖然你教得真的很好

  • @kek3324
    @kek3324 4 года назад

    that was elegant

  • @Reivivus
    @Reivivus 7 лет назад +1

    Wow! The sum of cubes was pretty hardcore!

  • @MathTutoringHelp
    @MathTutoringHelp 4 года назад

    I bet coming up with math techniques must be the hardest thing in the world.

  • @theCDGeffect
    @theCDGeffect 11 месяцев назад

    I found a recursive equation for finding the anti difference of n^m for any positive integer m :) I just need to make one step in the proof a little more rigorous

  • @johnbennett834
    @johnbennett834 6 лет назад

    nice one.

  • @takyc7883
    @takyc7883 3 года назад

    love this

  • @MrRyanroberson1
    @MrRyanroberson1 7 лет назад

    I always tried using the cubic pyramid method, for sN, find the volume of a stepped pyramid with a base of side length m and N dimensions. So for s3, it is a pyramid with a cube base (4d shape) but this new method is much better looking

  • @chuluu9104
    @chuluu9104 10 месяцев назад

    Thank you

  • @nicholasmartin6353
    @nicholasmartin6353 5 лет назад

    Recently, I have discovered a way to derive this formula geometrically. However, the math to get there is a bit more tedious, but it works. I would be very willing to share it if you are curious. (On a side note: I also found a geometric way to derive the formula for the sum of the first n perfect cubes.)

  • @michaeleiseman4099
    @michaeleiseman4099 7 лет назад +5

    CHALLENGE: Using a similar method, it is not so hard to prove that S3 = [m^2(m+1)^2]/4 = (S1)^2. I can easily derive this by algebra BUT can anyone come up with a GEOMETRIC proof for this? It SEEMS like there MUST be a geometric proof for this, but I have never seen it.

    • @blackpenredpen
      @blackpenredpen  7 лет назад +8

      OH OH!! I KNOW I KNOW!!
      Since I wont be able to make videos till later. Here's a hint for you.
      Count the number of rectangles in a , let's say, 8x8 chessboard. : )

    • @michaeleiseman4099
      @michaeleiseman4099 7 лет назад +2

      The number of SQUARES on an n x n chessboard is indeed n(n + 1)(2n + 1)/6 = S2, but this is not what I asked. I asked if there was a geometric proof for S3 = (S1)^2 which has nothing to do with S2.

    • @MathForLife
      @MathForLife 7 лет назад +1

      take three cases, 1^3, 1^3+2^3, and 1^3+2^3+3^3 then for each case draw a square, and you will see something interesting:)

    • @michaeleiseman4099
      @michaeleiseman4099 7 лет назад

      Yes, Yes. I have now created a geometric proof. Imagine that you have a square that has side length of n(n+1)/2 filled with unit cubes and we add a cube to it constructed of (n + 1)^3 unit cubes. This will make the total number of cubes [n(n+1)/2]^2 + (n + 1)^3. Expanding and simplifying we get (n^4 + 6n^3 + 13n^2 + 12 n + 4)/4 which factors to [(n+1)(n+2)/2]^2 which is the SAME expression you would get for the number of cubes in a square that is (n+1)(n+2)/2 on a side which is exactly n + 1 more on a side than the square we started with.
      Let's use some integers to make this easier to visualize. Let's make n = 4. The sum of integers from 1 to 4 is n(n+1)/2 = 4(4+1)/2 = 10. Construct a square containing [n(n+1)/2]^2 = 10^2 = 100 cubes (10 on a side). Now we wish to add to this, a cube that is n + 1 = 5 unit cubes on a side so it has a total of (n + 1)^3 = 5^3 = 125 unit cubes. We can now show that from all of these cubes we can construct a square that is 15 cubes (= the sum of integers from 1 to 5) on a side or 15^2 = 225 cubes and this is because [n(n+1)/2]^2 + (n + 1)^3 = [(n+1)(n+2)/2]^2.

    • @manudude02
      @manudude02 7 лет назад +1

      You can use induction to come up with a proof too. When n=1, S3=1^2=(S1)^2. Let's say you have a square of side length s (to mean S1 for tidyness sake), and you want to create a square with side length s+n+1, you would need to add 2s(n+1)+(n+1)^2 units to the area. Substituting s=n(n+1)/2, you are adding (n(n+1)(n+1)+(n+1)^2) to the area, or simplifying it, (n+1)^3 to the area (originally s^2). Therefore s^2+(n+1)^3=(s+n+1)^2.

  • @igorpinchevskiy3649
    @igorpinchevskiy3649 7 лет назад

    Awesome!

  • @bamdadshamaei1415
    @bamdadshamaei1415 7 лет назад +1

    Pascal's identity, nice

  • @ayyythatguy
    @ayyythatguy 7 лет назад +8

    I love this video, the sums are simple, but he provides us with elegant solutions with a similar enthusiasm to you 😃

  • @lindseywoo3339
    @lindseywoo3339 6 лет назад +5

    At 3:38, why do we use (n+1)^3-n^3? How do we arrive at this identity? Thanks!

    • @grivar
      @grivar 5 лет назад +4

      (May be a bit late) We don't arrive at it. We just take a known formula that we can use to our advantage. In this case we take (x+1)^3 = x^3−3x^2+3x−1 and then we remove the x^3 because we don't need it.

    • @xCorvus7x
      @xCorvus7x 5 лет назад

      @@grivar
      Except that (x+1)^3 = x^3 *+* 3x^2 + 3x *+* 1.
      Your right-hand side is equal to (x-1)^3.

    • @xCorvus7x
      @xCorvus7x 5 лет назад

      So would you basically just guess that the result of S_n will involve x^(n+1), and then consider how you get from any natural number x to its successor?
      (After all, all of this is proven by induction.)

    • @mmariokart231
      @mmariokart231 5 лет назад +1

      Yeah! I’m lost too, seems like a convenient step with a lot of trial and error behind it, I think it would be super cool to see the blind alleys and failed ideas that led to an uglier version of these identities only to be simplified, I want to see the process behind it, nor just this rehearsed explanation of definitive steps

  • @budtastic1224
    @budtastic1224 4 года назад +3

    Now im wondering if this method can be extended into higher powers...
    Like finding S3 using (n+1)^4 - n^4

    • @justanormalyoutubeuser3868
      @justanormalyoutubeuser3868 3 года назад +2

      Idk if it holds for every k but I think I spot a pattern.
      For k=0, n(0n+1)/1
      For k=1 n(0n+1)(1n+1)/1*2
      For k=2 n(0n+1)(1n+1)(2n+1)/1*2*3
      If I am right every time k increases by 1 you multiply by (kn+1)/(k+1)

    • @budtastic1224
      @budtastic1224 3 года назад

      @@justanormalyoutubeuser3868 oh wow! Never noticed that before! Nice catch!

  • @AlexeyErmilov
    @AlexeyErmilov 7 лет назад +1

    Another way is just assume that S2(n)=a*n^3+b*n^2+c*n+d. Calculate it for n=1,2,3,4; we will have 4 linear equations with 4 variables. Solve it, a=1/3 b=1/2 c=1/6 d=0. We will have same formula. Exactly same way to calculate S_k(n).

    • @Hexanitrobenzene
      @Hexanitrobenzene 3 года назад

      Nice catch! :)
      Not as elegant, but doesn't require leaps of insight. From the formula of arithmetic progression one can suspect that it's a polynomial of degree higher by one than the degree of the series.

  • @deepak-mo7qr
    @deepak-mo7qr 4 года назад

    The explanation is awesome, but how does it come to mind to take cube of( n-1) to substract cube of n... That's the most important thing to understand, please make us understood if you can

  • @Detherocable
    @Detherocable Год назад

    Dude, you are a wizard. Do you have any background on how the person (or even you) who came up with this derivation rationalised the selection of such a process? Like, how did they think of starting with the cube of n?

    • @user-db9mt5tj5p
      @user-db9mt5tj5p Год назад

      The difference (n+1)^k - n^k is always a polynomial of degree k-1 because it has the term k•n^{k-1} and the terms n^k eliminate each other.
      If you note that, you can represent the polynomial a_n = n^k as the difference a_n = b_{n+1} - b_n, where b_n is certain polynomial of degree k+1.
      b_n could be found as an arbitrary polynomial of degree k+1 (depends on k+2 coefficients), whose difference b_{n+1} - b_n is exactly n^k.
      Then, the sum of a_n is b_{n+1} - b_1 (as shown in this video).
      If a_n = n^2, then b_n could be chosen as
      n^3/3 - n^2/2 + n/6 + c,
      where c is an arbitrary number.
      For c=0 it can be rewritten as
      (n-1)n(2n-1)/6.
      Then the sum is b_{n+1} - b_1 = n(n+1)(2n+1)/6.
      This is the logic of the method. But it could be difficult to see, since the general method was adapted and applied to a specific example.

  • @MrCigarro50
    @MrCigarro50 5 лет назад

    Is there a formula for (x1+x2+...+xn)^4?

  • @emmanuelalbazi8560
    @emmanuelalbazi8560 7 лет назад

    Hi Can u please solve this integral
    Cos(2cosx)dx

  • @mobilkonto__free__9726
    @mobilkonto__free__9726 5 лет назад

    Awesome

  • @josecarlosguedes5320
    @josecarlosguedes5320 2 года назад

    Sublime!

  • @GDLameGames
    @GDLameGames 5 лет назад

    how did the 4^3 cancel out?

  • @rajudevib5680
    @rajudevib5680 6 лет назад

    thank you bro

  • @thereadersdaily7451
    @thereadersdaily7451 6 лет назад +2

    8:13, what's that ??? :P

  • @khundara980
    @khundara980 4 года назад

    what is the fomular of 3^1 + 3^2+ 3^3+ 3^4+ 3^5+… +3^n?Please.

  • @trevorallen3212
    @trevorallen3212 2 года назад

    Now try using a_n and a_1 to solve any polynomial series.

  • @frahhscloset3430
    @frahhscloset3430 4 года назад

    Can we use integral?

  • @jitendrapatle5025
    @jitendrapatle5025 5 лет назад

    thanks sir

  • @charlesbrowne9590
    @charlesbrowne9590 7 лет назад +2

    Instead of depending on tricks, use factorial polynomials and synthetic division. Any polynomial can be summed.

    • @sergiokorochinsky49
      @sergiokorochinsky49 7 лет назад

      Steinny Walleke, I don't have a clue of what you are talking about... please can you briefly explain, or share a link to a paper?...

    • @charlesbrowne9590
      @charlesbrowne9590 7 лет назад +1

      Sergio Korochinsky You can find this in Fundamentals of Numerical Analysis by Stephen Kellison (1975). We integrate by finding the anti- derivative of the integrand then evaluate and difference at the limits of integration. Similarly, we sum by finding the anti-difference of the summand. This converts the sum to a telescoping sum, so the solution is "last term minus first term".
      Polynomials are easy to find the anti-derivative: raise exponent by one and divide by the new exponent. But we only know this because we first find the derivative. Factorial polynomials are convenient for summing since the anti-difference of a factorial polynomial is raise the factorial polynomial exponent by one and divide by the new exponent.
      A factorial polynomial is similar to a number factorial, i.e. n! = n*(n-1)* ... 2*1. It is the product x*(x-1)*...(x-n+1). Some prefer to add rather than subtract the integers.
      Synthetic division is a fast algorithm for evaluating polynomials but it has others applications. It can be used to quickly convert from the coefficients of a polynomial to the coefficients of the equivalent factorial polynomial.
      All this is something of a lost art.

    • @sergiokorochinsky49
      @sergiokorochinsky49 7 лет назад

      Steinny Walleke, thank you for the reference to the book, I must get my hands on it! :-)
      I can identify the Pochhammer polinomials in your explanation, but the whole technique is new to me... something new to study!

    • @sergiokorochinsky49
      @sergiokorochinsky49 7 лет назад

      Steinny,
      following your explanation, and generalizing what Maks did in the video, I managed to demonstrate "the matrix approach" included in the "Faulhaber formula" Wikipedia article.
      Here it is the Mathematica line (you can go to WolframAlpha.com and then click on "Open Code") to calculate the coefficients for the first 10 polinomials:
      Inverse[Table[If[m>n-1,0,Binomial[n,m] (-1)^(n+m+1)],{n,1,k},{m,0,k-1}]/.k->10]//MatrixForm
      Thanks!!

    • @charlesbrowne9590
      @charlesbrowne9590 7 лет назад +1

      Sergio Korochinsky Here's a fun generalization of the Pythagorean theorem. Consider the "right pyramid" which is the convex set formed by the origin and three points, one per axis , say, (x,0,0), (0,y,0), and (0,0,z). Show that the sum of the squares of the areas of the three right triangles is the square of the area of the "hypotenuse triangle".

  • @ali2oukhayi598
    @ali2oukhayi598 5 лет назад

    Thank you so mush in moroco

  • @bossman4112
    @bossman4112 3 года назад

    That looked like easy money then the S2 showed up