A Nice Mathematics algebra problem | Olympiad Question | Exponential problem | x=?

Поделиться
HTML-код
  • Опубликовано: 5 фев 2025
  • #quantativeaptitude #maths #olympiad#exponents#exponents #integral#rational
    World math olympiad question | can you solve this? | can you solve this math problem,can you solve this challenging problem?,can you solve this equation,can you solve this puzzle,learn how to solve this challenging problem,can you solve this maths puzzle,math olympiad algebra problem,how can solve this puzzle,math olympiad problem,olympiad mathematics,math olympiad problems,mathematics olympiad,mathematics

Комментарии • 7

  • @HuzaifaKhan-m3i
    @HuzaifaKhan-m3i 7 дней назад +1

    ❤❤❤❤❤

  • @AfsarSaid-f8s
    @AfsarSaid-f8s 7 дней назад

    Good question

  • @NaeemKhan-q6w1v
    @NaeemKhan-q6w1v 7 дней назад

    Good

  • @SrisailamNavuluri
    @SrisailamNavuluri 7 дней назад

    1040=16(65)=2^4(81-16)=2^4(3^4-2^4)=6^4-4^2
    9+1/x=6,1/x=-3,x=-1/3
    7+1/x=4,1/x=-3,x=-1/3.

  • @SidneiMV
    @SidneiMV 7 дней назад +1

    8 + 1/x = u
    (u + 1)⁴ - (u - 1)⁴ = 1040
    u⁴ + 4u³ + 6u² + 4u + 1
    - (u⁴ - 4u³ + 6u² - 4u + 1) = 1040
    8u³ + 8u - 1040 = 0
    u³ + u - 130 = 0
    u³ - 125 + u - 5 = 0
    (u - 5)(u² + 5u + 25) + (u - 5) = 0
    (u - 5)(u² + 5u + 26) = 0
    u = 5
    8 + 1/x = 5
    *x = -1/3*

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 4 дня назад

    (3^2+/x)^2^2 ➖ (3^4+/x)2^2 (1^1+/x)^1^1 ➖ (3^2^2+/x)^1^1 (3^1^2+/x)^1 (3^2+/x) (x ➖ 3x+2).

  • @Ismailorakzai-u1m
    @Ismailorakzai-u1m 7 дней назад +1

    ❤❤❤❤❤❤