Deep Jariwala: Self-Hybridized Polaritons in Layered Excitonic Semiconductors and Heterostructures

Поделиться
HTML-код
  • Опубликовано: 8 сен 2024
  • Title: Self-Hybridized Polaritons in Layered Excitonic Semiconductors and Heterostructures
    Abstract: The isolation of stable atomically thin two-dimensional (2D) materials on arbitrary substrates has led to a revolution in solid state physics and semiconductor device research over the past decade. A variety of other 2D materials (including semiconductors) with varying properties have been isolated raising the prospects for devices assembled by van der Waals forces.1 Particularly, these van der Waals bonded semiconductors exhibit strong excitonic resonances2 and large optical dielectric constants as compared to bulk 3D semiconductors. .
    First, I will focus on the subject of strong light-matter coupling in excitonic 2D semiconductors, namely chalcogenides of Mo and W. Visible spectrum band-gaps with strong excitonic absorption makes transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as attractive candidates for investigating strong light-matter interaction formation of hybrid states.3-5 We will present our recent work on the fundamental physics of light trapping in multi-layer TMDCs when coupled to plasmonic substrates.6
    Next, we will show the extension of these results to halide perovskites7, 8 and superlattices of excitonic chalcogenides.9 These hybrid multilayers offer a unique opportunity to tailor the light-dispersion in the strong-coupling regime.9 We will discuss the physics of strong light-matter coupling and applications of these structures. If time permits, I will also present our recent work on scalable, localized quantum emitters from strained 2D semiconductors10 and control of light in magnetic semiconductors.11
    Our results highlight the vast opportunities available to tailor light-matter interactions11 and building practical devices with 2D semiconductors. I will conclude with a broad vision and prospects for 2D materials in the future of semiconductor opto-electronics and photonics.
    References:
    1. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, (2), 1102-1120.
    2. Lynch, J.; Guarneri, L.; Jariwala, D.; van de Groep, J. Journal of Applied Physics 2022, 132, (9), 091102.
    3. Jariwala, D.; Davoyan, A. R.; Wong, J.; Atwater, H. A. ACS Photonics 2017, 4, 2692-2970.
    4. Brar, V. W.; Sherrott, M. C.; Jariwala, D. Chemical Society Reviews 2018, 47, (17), 6824-6844.
    5. Anantharaman, S. B.; Jo, K.; Jariwala, D. ACS Nano 2021.
    6. Zhang, H.; Abhiraman, B.; Zhang, Q.; Miao, J.; Jo, K.; Roccasecca, S.; Knight, M. W.; Davoyan, A. R.; Jariwala, D. Nature Communications 2020, 11, (1), 3552.
    7. Anantharaman, S. B.; Stevens, C. E.; Lynch, J.; Song, B.; Hou, J.; Zhang, H.; Jo, K.; Kumar, P.; Blancon, J.-C.; Mohite, A. D.; Hendrickson, J. R.; Jariwala, D. Nano Letters 2021, 21, (14), 6245-6252.
    8. Song, B.; Hou, J.; Wang, H.; Sidhik, S.; Miao, J.; Gu, H.; Zhang, H.; Liu, S.; Fakhraai, Z.; Even, J.; Blancon, J.-C.; Mohite, A. D.; Jariwala, D. ACS Materials Letters 2021, 3, (1), 148-159.
    9. Kumar, P.; Lynch, J.; Song, B.; Ling, H.; Barrera, F.; Zhang, H.; Anantharaman, S. B.; Digani, J.; Zhu, H.; Choudhury, T. H.; McAleese, C.; Wang, X.; Conran, B. R.; Whear, O.; Motala, M.; Snure, M.; Muratore, C.; Redwing, J. M.; Glavin, N.; Stach, E. A.; Davoyan, A. R.; Jariwala, D. Nature nanotechnology 2022, 17 182-189.
    10. Kim, G.; Kim, H. M.; Kumar, P.; Rahaman, M.; Stevens, C. E.; Jeon, J.; Jo, K.; Kim, K.-H.; Trainor, N.; Zhu, H.; Sohn, B.-H.; Stach, E. A.; Hendrickson, J. R.; Glavin, N.; Suh, J.; Redwing, J. M.; Jariwala, D. ACS Nano 2022, 16, (6), 9651-9659.
    11. Zhang, H.; Ni, Z.; Stevens, C. E.; Bai, A.; Peiris, F.; Hendrickson, J. R.; Wu, L.; Jariwala, D. Nature Photonics 2022, 16, 311-317.

Комментарии •