Hola amigo! Me fascina lo lejos que estás llegando! Al parecer, el punto es una representación simbólica de un elemento en una posición indeterminada del espacio, ya que este se determina en función de más elementos (puntos). Dos elementos representan simbólicamente la distancia: uno está aquí y otro está allá. Tres elementos no solo simbolizan la distancia, sino también la unidad, la posición estructurada y una relación más compleja que fundamenta de manera más sólida el concepto de espacio. Así, se establece una progresión en la que, a medida que añadimos más elementos, se construye lo que entendemos como realidad, pero todo esto aún dentro de una dimensión unidimensional.
@TristanEspinoza-o9w gracias por el apoyo, jeje. No había pensado con respecto a la indeterminación de un punto como tal, ya que siempre hemos podido señalar a un sitio cualquiera y decir "he aquí un punto", pero creo que tiene sentido, pues ciertamente las determinaciones de los seres surge por cuestión de comparar con otros seres (lo que está arriba, está arriba porque tiene algo por debajo y así). Gracias por la idea 🫂🐢
@@adrianf.alvizuri2257 tal vez, al menos en el sentido en el que el punto puede representar de manera metafórica y literal el fin de las cosas, podría tener sentido, jaja. De cualquier modo, en el video que subí de "Acto y potencia" doy una definición algo más pensada 🐢
Pd: yo veo la línea como solo dos puntos en el infinito y semi recta como un punto que ves hasta el infinito. Y lo define como el inicio y final de dos puntos
Buen video, se ve que llegarás lejos, por mi parte sé que el punto es el que finaliza la oración jajajajja. poniéndome a pensar un poco, noté que este dilema no se da solo con el punto, lo puedes pensar por ejemplo con el tiempo, el tiempo está hecho de infinitos instantes, pero esos infinitos instantes de algún modo crean una secuencia temporal, de este modo parece lógico que una línea sí debe ser una unión de puntos, ahora, puede ser que la longitud de una línea no se obtenga sumando infinitos 0, se puede pensar en el punto en algo parecido a la materia, que se puede dividir tantas veces hasta llegar a un límite, el cual conocemos como quark, lo curioso acá es que a diferencia de un punto, el tamaño de un quark no está definido, lo que hace pensar, y si quizá el tamaño de un punto no es realmente 0? así como el quark, tendría una longitud no definida, lo cual no es una locura puesto que existen por ejemplo los números imaginarios, los cuales tampoco tienen una longitud definida quizá el punto pertenece a una categoría similar, la cual aun desconocemos, aunque eso puede dejar muchas más dudas aun.
@@chichiqui8179 jajaja, buena acepción, no sé cómo no lo pensé antes 😂 muchas gracias por el apoyo. De cualquier modo, si tienes curiosidad de a qué conclusión llegué, el video que subí hoy "Acto y potencia" tiene las respuesta 🐢
@@chichiqui8179 muy bien, jaja, ya la leí, aunque nada más haría una pregunta: ¿Por qué no conocemos el tamaño del quark? Porque si es cognoscible y únicamente no lo sabemos por dificultades externas (como que no tengamos la herramienta adecuada, por decir algún ejemplo) entonces es mera cuestión de tiempo y tecnología para que se pueda, mientras que el punto, conceptualmente no tiene, así que no importaría cuánto tiempo no tecnología se invierta, jamás se podrá. De todas formas, la idea del tiempo también es bastante interesante, y aunque no me animé a meterla en el video que te comenté, la dejo intuida jeje 🐢
@@YehosephRiera Tienes razón, la razón por la que desconocemos el tamaño del quark es la falta de tecnología, a diferencia del punto que no se desconoce su tamaño.
Buenas rey, un saludo desde Argentina! "el todo es más que la suma de sus partes" es una conclusión de la escuela psicológica de la Gestalt, este describe al "fenómeno emergente", el fenómeno emergente yo lo defino como el conjunto de unidades que genera un nuevo resultado, ejemplo la suma de sinapsis en el cerebro genera a la conciencia (o esa es al menos la idea actual desde la neurociencia), el conjunto de pájaros volando sincronizadamente genera esa "masa" en el cielo que se mueve de un lado ya otro como como olas. Ahora lo importante es ver CUAL es realmente el fenómeno emergente y cuales son las partes, yo no lo se, quizás estás partiendo desde el punto pero quizás el punto es el fenómeno emergente si tomamos la definición de que un punto es la coordenada entre dos líneas, así obtenemos al punto como un fenómeno emergente desde situaciones concisas, desde la idea de "conciencia cuántica" podría imaginar que el punto "no es" en sí mismo hasta medirlo a partir de líneas, quizás desde ese punto podemos redefinir el concepto de línea, quizás las conclusiones son correctas, quizás algún cimiento entre tanta base no, y a saber si estas definiciones contemplan un ente NO dimensional en el espacio
@@WasingerCristian guau, jajaja, ciertamente me siento ignorante. Muchas gracias por tu comentario y por finalmente aclararme el origen de aquella frase. Complementas bastante lo expuesto y generas nuevas ideas en mi pensamiento que creo es lo más importante. Un saludote hasta Argentina desde México, rey 🫂🐢
@YehosephRiera noo, por favor, tenés un brillo enorme y ciertamente yo no se nada de matemáticas, mi "campo" (con toda humildad) es la medicina y la mente, sos brillante, seguí subiendo contenido por favor y un abrazo enorme
Holaa ya lo dijeron varios comentarios pero me parece que no tomamos en consideracion, ni nosotros ni "la realidad" los infinitos puntos primero, para formar después la linea. El tiempo, con sus infinitos instantes, NUNCA generaría un momento. Pues nosotros, recordando, experimentando, imaginando o visualizando, tampoco formamos los momentos a partir de infinitos instntes, cómo no formamos una linea a partir de puntos infinitos. Creo que hay un limite incognoscible de definición para todo
@@RamiroGomez-gm1ko hola, jaja. Pues no sé realmente qué decir al respecto, sin embargo, creo haber resuelto el problema en el video de "acto y potencia", por si te interesa checarlo jeje. Saludos 🐢
"Un punto es un lugar determinado en el espacio" es como decir "Un punto es un lugar determinado en el espacio mediante un punto". Del mismo modo "es una determinación en un espacio dado" es lo mismo que decir "es una determinación en un punto dado".
La razón por la que la línea tiene dimensión 1 pese a que sea un conjunto de puntos, es que tiene una cantidad "incontable" de puntos. Esto es un concepto matemático no tan básico. En tu ejemplo, sumas el 0 una cantidad "contable" de veces. Contable en matemáticas se refiere al tamaño del conjunto de los naturales e incontable al de los reales. La cantidad de números reales es tan abrumadoramente superior a la cantidad de números naturales (o enteros, o racionales, o incluso mucho más allá), que es gracias a esto que existe el concepto de "continuo".
@@naimzuluaga9338 creo que tienes cierta razón, aunque tampoco creo que del todo. Sea como sea, creo que me acabas de iluminar otra duda que tenía pero en cuestión de cantidades discretas y continuas. Gracias por el comentario 🫂🐢
Me da mucho gusto que pienses en éstas cosas, yo también lo hago y la gente lo tacha de sinsentido, pero por éste concepto, llegué a comprobar a Dios, y algunos secretos del universo más. No es broma
@@GalaadCastellanos Que belleza. Yo también estoy esperando encontrarme con el factor teológico en algún punto de mis divagaciones, simplemente quiero ver hasta dónde puedo llegar por mi propia cuenta. Saludos 🫂🐢
Yo creo que el problema no está en el punto si no en la linea y lamentablemente mi defensa cae en una falacia auto refencial pero almenos salva al pobre punto de ser el culpable, El punto lo definimos como un espacio señalado sin dimensión y una linea como el espacio trazado entre 2 puntos, está se compone de infinitos puntos con infinitos espacios pequeños para defender al círculo , osea que podría tener y definir una línea como infinitas líneas compuestas por infinitos puntos y separados por infinitos espacios por ende una linea podría ser vista desde más cerca con infinitas líneas con infinitas puntos separados por infinitos espacios. la verdad muy muy interesante el tema súper entretenido y si te interesa algún charlar o debatir esto con un comentario vemos todo
@@Usuariopromedio-q2g interesante tu propuesta, no se me había ocurrido pensar que el problema tal vez no fuera el punto, jeje. De cualquier modo, creo que encontré una definición que tiene algo de sentido y la explico en el video de "Acto y potencia", por si te interesa. Y por supuesto que me gustaría debatir al respecto, jeje, no siempre tengo tiempo, pero siempre tengo ganas. Saludos 🫂🐢
Creo que el problema radica en que queremos ver el punto como materia y sólo es materia cuando lo representamos con la famosa punta afilada del lápiz, pero es eso, sólo la representación del punto. Creo que punto no es algo sino la carencia de algo, por ejemplo el cero no es algo sino la carencia de cantidad, el frío no es algo sino la carencia de calor, el vacío no es algo sino la carencia de materia, el punto no es algo sino la carencia de dimensiones, pero la existencia de esa carencia es lo que le da sentido a la existencia de lo que sí existe, como la linea y el resto de dimensiones. Creo. ... Y creo también que te empiezo a seguir. Saludos.
@@elrincondelquijote5621 muchísimas gracias. Justamente para allá iba a ir con el video de mañana, porque ya me estoy oliendo una mejor solución que simplemente no definirlo. Saludos y gracias por seguir este proyecto 🫂🐢
@@gamafloresmaximiliano2404 en un principio esa era mi meta, pero donde vivo no hay lic en mate 😭 pero muchísimas gracias tus palabras, llenan ese vacío 🫂🐢
@YehosephRiera Bueno entiendo que la geometría normal que se enseña en la educación básica fue desarrollada por Euclides en sus Elementos (donde desarrolla el primer sistema axiomatico, creo) y entiendo que la mecánica newtoniana supone la geometría euclidiana o algo así. Pero no me creas mucho 😆
@@elopinador6633 si, algo así es. Básicamente se hace un recorrido histórico de las matemáticas conforme se avanza en la educación básica, se empieza con las matemáticas concebidas por los griegos y todo lo que surge a partir de ello, aunque llegan hasta principios del renacimiento y ya jajajaja
La respuesta a qué es el punto (desde mi perspectiva) la digo en este video 🐢
ruclips.net/video/PGSJlW_SL_M/видео.htmlsi=9Cl9ywo0y6mRe-8G
Hola amigo! Me fascina lo lejos que estás llegando!
Al parecer, el punto es una representación simbólica de un elemento en una posición indeterminada del espacio, ya que este se determina en función de más elementos (puntos). Dos elementos representan simbólicamente la distancia: uno está aquí y otro está allá.
Tres elementos no solo simbolizan la distancia, sino también la unidad, la posición estructurada y una relación más compleja que fundamenta de manera más sólida el concepto de espacio. Así, se establece una progresión en la que, a medida que añadimos más elementos, se construye lo que entendemos como realidad, pero todo esto aún dentro de una dimensión unidimensional.
@TristanEspinoza-o9w gracias por el apoyo, jeje. No había pensado con respecto a la indeterminación de un punto como tal, ya que siempre hemos podido señalar a un sitio cualquiera y decir "he aquí un punto", pero creo que tiene sentido, pues ciertamente las determinaciones de los seres surge por cuestión de comparar con otros seres (lo que está arriba, está arriba porque tiene algo por debajo y así). Gracias por la idea 🫂🐢
No sé cómo llegué aquí.
Pero me gusta como explica este men
@@juliodamianaguirre2507 gracias, jaja, se hace lo que se puede 🐢
No sé cómo llegué acá pero me caes bien y me gusta cómo comunicas y lo que comunicas ❤
@@ani.cc7 muchísimas gracias por tu comentario, le hace bien a mi ánimo 🫂🐢
No es como tratar de definir la felicidad? Ya que es un fin en si mismo.
@@adrianf.alvizuri2257 tal vez, al menos en el sentido en el que el punto puede representar de manera metafórica y literal el fin de las cosas, podría tener sentido, jaja. De cualquier modo, en el video que subí de "Acto y potencia" doy una definición algo más pensada 🐢
Me cae con madre el chuek filósofo ❤ jajaja broh no se ni porque me sales pero me quedé al final del video
@@jxeygarza jajaja, pues muchísimas gracias, se aprecia mucho. Vuelva pronto 🫂🐢
Justamente en el libro de geometría plana y razona de zubieta lo aborda a través de línea y línea de punto.
Pd: yo veo la línea como solo dos puntos en el infinito y semi recta como un punto que ves hasta el infinito. Y lo define como el inicio y final de dos puntos
Aunque es verdad que estoy empezando a estudiar geometría jsjsjsjs
@@Bluefandub bastante cerca de de la conclusión a la que llegué en los siguientes vídeos, jajaja, así que me doy por satisfecho 🫂🐢
@YehosephRiera aun los estoy viendo jsjsjssj
Buen video, se ve que llegarás lejos, por mi parte sé que el punto es el que finaliza la oración jajajajja.
poniéndome a pensar un poco, noté que este dilema no se da solo con el punto, lo puedes pensar por ejemplo con el tiempo, el tiempo está hecho de infinitos instantes, pero esos infinitos instantes de algún modo crean una secuencia temporal, de este modo parece lógico que una línea sí debe ser una unión de puntos, ahora, puede ser que la longitud de una línea no se obtenga sumando infinitos 0, se puede pensar en el punto en algo parecido a la materia, que se puede dividir tantas veces hasta llegar a un límite, el cual conocemos como quark, lo curioso acá es que a diferencia de un punto, el tamaño de un quark no está definido, lo que hace pensar, y si quizá el tamaño de un punto no es realmente 0? así como el quark, tendría una longitud no definida, lo cual no es una locura puesto que existen por ejemplo los números imaginarios, los cuales tampoco tienen una longitud definida quizá el punto pertenece a una categoría similar, la cual aun desconocemos, aunque eso puede dejar muchas más dudas aun.
@@chichiqui8179 jajaja, buena acepción, no sé cómo no lo pensé antes 😂 muchas gracias por el apoyo. De cualquier modo, si tienes curiosidad de a qué conclusión llegué, el video que subí hoy "Acto y potencia" tiene las respuesta 🐢
@@YehosephRieratambién llegué a una conclusión interesante hace un momento, acabo de editar el comentario.
@@YehosephRiera aun no veo el video completo, de todos modos también llegué a una conclusión algo interesante, edité el comentario para añadir la idea
@@chichiqui8179 muy bien, jaja, ya la leí, aunque nada más haría una pregunta: ¿Por qué no conocemos el tamaño del quark? Porque si es cognoscible y únicamente no lo sabemos por dificultades externas (como que no tengamos la herramienta adecuada, por decir algún ejemplo) entonces es mera cuestión de tiempo y tecnología para que se pueda, mientras que el punto, conceptualmente no tiene, así que no importaría cuánto tiempo no tecnología se invierta, jamás se podrá. De todas formas, la idea del tiempo también es bastante interesante, y aunque no me animé a meterla en el video que te comenté, la dejo intuida jeje 🐢
@@YehosephRiera Tienes razón, la razón por la que desconocemos el tamaño del quark es la falta de tecnología, a diferencia del punto que no se desconoce su tamaño.
Buenas rey, un saludo desde Argentina! "el todo es más que la suma de sus partes" es una conclusión de la escuela psicológica de la Gestalt, este describe al "fenómeno emergente", el fenómeno emergente yo lo defino como el conjunto de unidades que genera un nuevo resultado, ejemplo la suma de sinapsis en el cerebro genera a la conciencia (o esa es al menos la idea actual desde la neurociencia), el conjunto de pájaros volando sincronizadamente genera esa "masa" en el cielo que se mueve de un lado ya otro como como olas. Ahora lo importante es ver CUAL es realmente el fenómeno emergente y cuales son las partes, yo no lo se, quizás estás partiendo desde el punto pero quizás el punto es el fenómeno emergente si tomamos la definición de que un punto es la coordenada entre dos líneas, así obtenemos al punto como un fenómeno emergente desde situaciones concisas, desde la idea de "conciencia cuántica" podría imaginar que el punto "no es" en sí mismo hasta medirlo a partir de líneas, quizás desde ese punto podemos redefinir el concepto de línea, quizás las conclusiones son correctas, quizás algún cimiento entre tanta base no, y a saber si estas definiciones contemplan un ente NO dimensional en el espacio
@@WasingerCristian guau, jajaja, ciertamente me siento ignorante. Muchas gracias por tu comentario y por finalmente aclararme el origen de aquella frase. Complementas bastante lo expuesto y generas nuevas ideas en mi pensamiento que creo es lo más importante. Un saludote hasta Argentina desde México, rey 🫂🐢
@YehosephRiera noo, por favor, tenés un brillo enorme y ciertamente yo no se nada de matemáticas, mi "campo" (con toda humildad) es la medicina y la mente, sos brillante, seguí subiendo contenido por favor y un abrazo enorme
@@WasingerCristian muchas gracias, jeje, eso tengo planeado. Gracias por el apoyo 🫂🐢
Holaa ya lo dijeron varios comentarios pero me parece que no tomamos en consideracion, ni nosotros ni "la realidad" los infinitos puntos primero, para formar después la linea. El tiempo, con sus infinitos instantes, NUNCA generaría un momento. Pues nosotros, recordando, experimentando, imaginando o visualizando, tampoco formamos los momentos a partir de infinitos instntes, cómo no formamos una linea a partir de puntos infinitos. Creo que hay un limite incognoscible de definición para todo
@@RamiroGomez-gm1ko hola, jaja. Pues no sé realmente qué decir al respecto, sin embargo, creo haber resuelto el problema en el video de "acto y potencia", por si te interesa checarlo jeje. Saludos 🐢
"Un punto es un lugar determinado en el espacio" es como decir "Un punto es un lugar determinado en el espacio mediante un punto". Del mismo modo "es una determinación en un espacio dado" es lo mismo que decir "es una determinación en un punto dado".
@@elektrotubbie qué? 😵💫 Jajaja. Ya cambié mi concepción, la nueva definición está en el último video que subí. Gracias por comentar. Saludos 🫂🐢
@@YehosephRiera Gracias por responder. Me suscribo.
@@elektrotubbie a ti por aportar tu opinión y apoyar este proyecto 🐢
estuvo chevere el video
@@gerardoaquino7947 Gracias!!! Los siguientes dos son una especie de continuación por si te interesa 🐢
La razón por la que la línea tiene dimensión 1 pese a que sea un conjunto de puntos, es que tiene una cantidad "incontable" de puntos. Esto es un concepto matemático no tan básico. En tu ejemplo, sumas el 0 una cantidad "contable" de veces. Contable en matemáticas se refiere al tamaño del conjunto de los naturales e incontable al de los reales. La cantidad de números reales es tan abrumadoramente superior a la cantidad de números naturales (o enteros, o racionales, o incluso mucho más allá), que es gracias a esto que existe el concepto de "continuo".
@@naimzuluaga9338 creo que tienes cierta razón, aunque tampoco creo que del todo. Sea como sea, creo que me acabas de iluminar otra duda que tenía pero en cuestión de cantidades discretas y continuas. Gracias por el comentario 🫂🐢
Me da mucho gusto que pienses en éstas cosas, yo también lo hago y la gente lo tacha de sinsentido, pero por éste concepto, llegué a comprobar a Dios, y algunos secretos del universo más. No es broma
@@GalaadCastellanos Que belleza. Yo también estoy esperando encontrarme con el factor teológico en algún punto de mis divagaciones, simplemente quiero ver hasta dónde puedo llegar por mi propia cuenta. Saludos 🫂🐢
Yo creo que el problema no está en el punto si no en la linea y lamentablemente mi defensa cae en una falacia auto refencial pero almenos salva al pobre punto de ser el culpable,
El punto lo definimos como un espacio señalado sin dimensión y una linea como el espacio trazado entre 2 puntos, está se compone de infinitos puntos con infinitos espacios pequeños para defender al círculo , osea que podría tener y definir una línea como infinitas líneas compuestas por infinitos puntos y separados por infinitos espacios por ende una linea podría ser vista desde más cerca con infinitas líneas con infinitas puntos separados por infinitos espacios.
la verdad muy muy interesante el tema súper entretenido y si te interesa algún charlar o debatir esto con un comentario vemos todo
@@Usuariopromedio-q2g interesante tu propuesta, no se me había ocurrido pensar que el problema tal vez no fuera el punto, jeje. De cualquier modo, creo que encontré una definición que tiene algo de sentido y la explico en el video de "Acto y potencia", por si te interesa.
Y por supuesto que me gustaría debatir al respecto, jeje, no siempre tengo tiempo, pero siempre tengo ganas. Saludos 🫂🐢
Creo que el problema radica en que queremos ver el punto como materia y sólo es materia cuando lo representamos con la famosa punta afilada del lápiz, pero es eso, sólo la representación del punto. Creo que punto no es algo sino la carencia de algo, por ejemplo el cero no es algo sino la carencia de cantidad, el frío no es algo sino la carencia de calor, el vacío no es algo sino la carencia de materia, el punto no es algo sino la carencia de dimensiones, pero la existencia de esa carencia es lo que le da sentido a la existencia de lo que sí existe, como la linea y el resto de dimensiones. Creo. ... Y creo también que te empiezo a seguir. Saludos.
@@elrincondelquijote5621 muchísimas gracias. Justamente para allá iba a ir con el video de mañana, porque ya me estoy oliendo una mejor solución que simplemente no definirlo. Saludos y gracias por seguir este proyecto 🫂🐢
Serías muy bueno en matemáticas puras 🕴️
@@gamafloresmaximiliano2404 en un principio esa era mi meta, pero donde vivo no hay lic en mate 😭 pero muchísimas gracias tus palabras, llenan ese vacío 🫂🐢
@@YehosephRiera con esa curiosidad y flexibilidad mental que tienes podrías hacerlo aún, tu cerebro haría buuuuum👍
100% recomendado xd
@@gamafloresmaximiliano2404 ya veremos, definitivamente no lo descarto, pero ahora estoy enfocado en cierta cosa en particular 🫡😅
@@YehosephRiera amén 🙏
Creo que el punto lo define Euclides como algo que no tiene partes. Aunque no me creas mucho jaja
@@elopinador6633 siempre me imaginé que algún griego tendría alguna definición, gracias por la nota 🫂🐢
@YehosephRiera Bueno entiendo que la geometría normal que se enseña en la educación básica fue desarrollada por Euclides en sus Elementos (donde desarrolla el primer sistema axiomatico, creo) y entiendo que la mecánica newtoniana supone la geometría euclidiana o algo así. Pero no me creas mucho 😆
@@elopinador6633 si, algo así es. Básicamente se hace un recorrido histórico de las matemáticas conforme se avanza en la educación básica, se empieza con las matemáticas concebidas por los griegos y todo lo que surge a partir de ello, aunque llegan hasta principios del renacimiento y ya jajajaja