Parseval's Theorem

Поделиться
HTML-код
  • Опубликовано: 25 янв 2025

Комментарии • 35

  • @JobykoIL25
    @JobykoIL25 2 года назад +9

    It's Plancharel's theorem BTW not Parseval's

    • @Eigensteve
      @Eigensteve  2 года назад +9

      Great point! I didn't realize that Parseval is for 2-pi periodic functions (i.e. for the Fourier series), while Plancharel is for the continuous generalization (i.e. for the Fourier transform). Thanks for pointing this out.

    • @ANJA-mj1to
      @ANJA-mj1to Год назад

      #Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.

  • @yesntpittzant4156
    @yesntpittzant4156 4 года назад +33

    I'm astounded that you offer so much insight into this topic with this playlist and explain it so good. It's free and better explained than some paid courses, I'm really thankful for that :D

  • @zoasis7805
    @zoasis7805 3 года назад +9

    If you listen carefully he says your name at 0:39

    • @avi-brown
      @avi-brown 3 года назад +1

      lol

    • @Pheosis
      @Pheosis 3 года назад +1

      hmm thats weird, I heard mine at 0:35

    • @welcomeback7318
      @welcomeback7318 2 года назад +3

      thats weird, I heard mine at 0:06

  • @sehailfillali615
    @sehailfillali615 4 года назад +15

    Thanks a lot for making this material.

  • @unkownuser1042
    @unkownuser1042 2 года назад

    Best play list of fourier transform so far....

  • @sukursukur3617
    @sukursukur3617 4 года назад +1

    Why is energy defined as integrate of square of signal function? 3:40

    • @miguelmondardo2741
      @miguelmondardo2741 4 года назад

      That's one way to measure a signal (you can also measure by their power, if the energy is infinite).
      The phisical meaning is that if you have a load of 1 ohm and x(t) is your voltage or current (V=R*I, if R=1 => V=I), the energy calculated is the energy that dissipates in that load.

    • @sukursukur3617
      @sukursukur3617 4 года назад +1

      @@miguelmondardo2741 thank you. But i didnt understand your answer

  • @carlosherrero4990
    @carlosherrero4990 4 года назад +6

    love you and peace bro!

  • @agrajyadav2951
    @agrajyadav2951 Год назад

    why are u such a legend?

  • @ANJA-mj1to
    @ANJA-mj1to Год назад

    #Now I have seen on Google that Plancharel's Theorem is used in non-periodic continuous functions (i. e. of Fourier transform) but in case of Fourier serias we use Parseval's Theorem (i. e. periodic). It is from engineering approach so I comment Parseval's Theorem vs Plancharel's Theorem. But in my opinion it can bring many problems for findind a power in a long, not small, periodic waveform dispersion.

  • @sanjitfranklin
    @sanjitfranklin 4 года назад

    This was really well explained. Thanks!

  • @NickFilipovic
    @NickFilipovic 4 года назад

    Thank you again, greetings from the other UW (University of Waterloo)

  • @saitaro
    @saitaro 4 года назад +21

    First like, then watch.

  • @giziemcbarns
    @giziemcbarns 3 года назад +1

    Aren't all numbers the same?

  • @davidcalhas8417
    @davidcalhas8417 2 года назад

    Great explanation! Can anyone point me to a place where this theorem is related for other transforms? E.g. such as the cosine transform?

  • @sonasol121121
    @sonasol121121 3 года назад

    I wondered for a bit, is Steve left-handed? Then I created this scenario on my head trying to understand, my first guess is yes, he's indeed left-handed. Anyway, I'm loving the series, I will indeed watch all the videos on all the playlists! Good to see there are people willing to make others learn. Thank you.

  • @finnjake6174
    @finnjake6174 4 года назад +3

    THANK YOU!!!

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 года назад

    Energy, ie. the conserved quantity, is not in the integral of the norm, it's in the integral of the norm squared. Huge difference. Why be this sloppy?

  • @sajidhaniff01
    @sajidhaniff01 4 года назад

    Many thanks!

  • @GauravGupta-pb8mk
    @GauravGupta-pb8mk 4 года назад

    Thank you sir

  • @akashbhullar
    @akashbhullar 4 года назад +2

    Hold On Hold On. Is this necessary for Data Science?

    • @Eigensteve
      @Eigensteve  4 года назад +9

      If you want to compress your data and have any guarantee on the fidelity of your reconstruction, then yes.

  • @stephaniesmith4337
    @stephaniesmith4337 4 года назад +2

    Is he writing backwards or is this some videography trick?

  • @dianemckimmy5701
    @dianemckimmy5701 4 года назад

    #parsevalmusoc

  • @nomtomm
    @nomtomm 4 года назад +2

    are you writing backward or are finals finally getting to me

  • @damemer8724
    @damemer8724 3 года назад +1

    Bhaiya kuch samajh nahi aya