finding the critical numbers of t^(3/4)-2t^(1/4)

Поделиться
HTML-код
  • Опубликовано: 18 янв 2025

Комментарии • 14

  • @ThomasJohnMolnga
    @ThomasJohnMolnga 9 месяцев назад

    Honestly, I'm impressed with your explanations ❤

  • @DepFromDiscord
    @DepFromDiscord 2 года назад +5

    Neat! I knew of zeros of a function, but not critical numbers!

  • @Borgia1492
    @Borgia1492 Год назад

    Thank you, this explained it very well

  • @pooluch
    @pooluch 2 года назад

    Now I love it even more!

  • @KingGisInDaHouse
    @KingGisInDaHouse 2 года назад +1

    Hey I was experimenting with finding cubic functions that satisfy two critical points.
    So say the functions critical points are (1,-1) and (0,5).
    So we know
    y’=a(x-1)(x-0)=a(x-1)x=ax^2+ax
    $y’ dx = $ (ax^2 + ax) dx
    y= ax^3/3 + (ax^2)/2 + C.
    You have two initial values given to you just plug in your x and y coordinates and you get a simple 2 variable system of equations to solve for a and C and you can’t change a around and have both of the critical points satisfy the equation I’ve already tried. So theoretically every cubic that has critical points is uniquely identified by its critical points. Can you prove or disprove this.

  • @tbg-brawlstars
    @tbg-brawlstars 2 года назад +4

    Umm...do you mean critical *points* of a function by critical numbers ?

  • @umarfayziev5235
    @umarfayziev5235 2 года назад +7

    im the log2(2)=x to comment

    • @lih3391
      @lih3391 2 года назад +3

      Hi, "the one to comment"

    • @volodymyrgandzhuk361
      @volodymyrgandzhuk361 2 года назад

      @@lih3391 not the one, the first

    • @Alians0108
      @Alians0108 2 года назад +1

      @@volodymyrgandzhuk361 Hi, "the one to comment"

    • @0w0-i4o
      @0w0-i4o 2 года назад

      @@Alians0108 not the one, the first

    • @Gutagi
      @Gutagi 2 года назад

      @@0w0-i4o Hi, “the one to comment”