Solving congruences, 3 introductory examples

Поделиться
HTML-код
  • Опубликовано: 21 дек 2024
  • Learn how to solve basic linear congruences for your number theory class. We will solve
    1. 4x is congruent to 8 (mod 5)
    2. 4x is congruent to 2 (mod 5)
    3. 4x is congruent to 3 (mod 5)
    💪 Support this channel and get my math notes by becoming a patron: / blackpenredpen

Комментарии • 148

  • @BigDBrian
    @BigDBrian 6 лет назад +175

    note, for this comment = will replace the congruence symbol
    4x = 3 (mod 5)
    4x = 8 (mod 5)
    x = 2 (mod 5)

  • @rb1471
    @rb1471 6 лет назад +98

    You can solve the third one either way,
    1)
    4x = 3 (mod 5)
    -1x = 3 (mod 5)
    x = -3 (mod 5)
    x = 2 (mod 5)
    2)
    4x = 3 (mod 5)
    4x = 3 + 5 (mod 5)
    4x / 4 = 8 / 4 (mod 5) (gcd(4, 5) = 1)
    x = 2 (mod 5)
    It's interesting how you can simplify either side by multiples of 5 to get the answer, really enforces the idea that it is "mod 5".

  • @OonHan
    @OonHan 6 лет назад +81

    BLACK PEN RED PEN
    *_YAYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY_*

  • @elsavelaz
    @elsavelaz 6 лет назад +7

    I wish it had the final solution to self-check understanding, because if it was "so easy," I wouldn't have googled help. Cute vid, good explanation, just please finish the examples!

  • @blackpenredpen
    @blackpenredpen  6 лет назад +114

    First!!!!!

    • @AlgyCuber
      @AlgyCuber 6 лет назад +4

      eigth ...

    • @TheLaughterAsylum
      @TheLaughterAsylum 6 лет назад +2

      Blackpenredpen 57th

    • @nigit7451
      @nigit7451 6 лет назад +1

      (2^2=2(2)=2+2=4)th reply

    • @anbn2618
      @anbn2618 6 лет назад

      551st (mod2)​

    • @gorymclorry7414
      @gorymclorry7414 6 лет назад +2

      Is the answer to the third question:
      x is congruent to 2 (mod 5)?
      Steps:
      4x ≡ 3 (mod 5)
      -1x ≡ 3 (mod 5) like step 2.
      x ≡ -3 (mod 5)
      x ≡ 2 (mod 5)
      One doubt: Y didn't you use the same method of making it -1x in example 1?

  • @FrogworfKnight
    @FrogworfKnight 3 года назад +18

    Not certain if this is a weird method for the second one but...
    4x≡2(mod 5)
    2x≡1(mod 5) [divide by two, since gcd(2,5)=1 and 2/2 gives an integer answer]
    2x≡6(mod 5) [increasing 1 by one modular 5 cycle to 6]
    x≡3(mod 5) [divide by two, since again gcd (2,5)=1 and 6/2 gives an integer answer]

  • @hungryfareasternslav1823
    @hungryfareasternslav1823 5 лет назад +17

    3:38 When you finish the number theory

  • @muhammadhamid3108
    @muhammadhamid3108 9 месяцев назад +1

    4x=3 mod 5
    (5x-x)=3 mod 5
    -x=3 mod 5
    x=-3 mod 5
    x=2 mod 5
    Thank you so much Black Pen Red Pen.

  • @akshat9282
    @akshat9282 6 лет назад +9

    For the third one, just add 5 to the right side and it becomes the same as the first equation.

  • @rexevan6714
    @rexevan6714 6 лет назад +44

    So that's where the black pen red pen yay coming from

  • @Destroyerz117
    @Destroyerz117 Месяц назад

    these helped out a ton, thank you so much

  • @angelaking9701
    @angelaking9701 3 месяца назад

    wow finally in understand the mod function thank u so much !!!

  • @jonashammerich3552
    @jonashammerich3552 6 лет назад +12

    I really love your mic! still!!! And that intro was soooooooooo cute!!

    • @blackpenredpen
      @blackpenredpen  6 лет назад +3

      Thank you!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  • @monicawughanga3338
    @monicawughanga3338 4 месяца назад

    this was so helpful! thanks!

  • @diablo3879
    @diablo3879 5 лет назад +4

    can u tell how can I solve similar questions where equation is x^2 = a (mod p), here value of x and a is known , how can i find p

  • @sergioh5515
    @sergioh5515 6 лет назад +4

    2 videos on modular arithmetic back after back! :D thanks again. I really like the videos a lot thnx. Mainly cuz I actually like modular arithmetic haha thnx again!!!!!!!

  • @Danicker
    @Danicker 4 года назад +17

    For the second one you could also do:
    4x = 2mod5
    4x = 12mod5 (+10)
    x = 3mod5 (/4)

    • @mahlet5396
      @mahlet5396 2 года назад

      76

    • @Apollorion
      @Apollorion 6 месяцев назад

      Danicker, I think you didn't divide by three but by four, ao because I used this method myself, too.

    • @Danicker
      @Danicker 6 месяцев назад +1

      @@Apollorion Yes, you're right!

  • @shandyverdyo7688
    @shandyverdyo7688 5 лет назад +1

    I'm very grateful to u.
    Thanks and nice timing that i need this one.

  • @javierlim4873
    @javierlim4873 6 лет назад +11

    The answer to the last one is 2(mod5) right?

    • @crosby7319
      @crosby7319 6 лет назад +2

      Yes, that is correct. Basically, apply the same method as no. 2 to get x = -3 (mod 5), i.e. x = 2 (mod 5)

    • @poonamkabra6367
      @poonamkabra6367 6 лет назад

      Yeah!!

  • @Rubiks892
    @Rubiks892 3 года назад

    why does the gcd = 1 thing work for dividing?

  • @emmanuelmercy3840
    @emmanuelmercy3840 Год назад +9

    The one I even want u to do u did not do it self🤨

  • @cloud_245
    @cloud_245 2 года назад

    2:53 Why do we want the answer to be as positive as possible?

  • @deidara_8598
    @deidara_8598 3 года назад +1

    Trick: 4 = -1 (mod 5)
    4x = 8 (mod 5) -x = 8 (mod 5)
    4x = 2 (mod 5) -x = 2 (mod 5)
    4x = 3 (mod 5) -x = 3 (mod 5)
    Of course all of them are trivial
    -x = 8 (mod 5) x = 5k-3 for any integer k (8 = 3 mod 5)
    -x = 2 (mod 5) x = 5k-2 for any integer k
    -x = 3 (mod 5) x = 5k-3 for any integer k

  • @Ethan-mj6wy
    @Ethan-mj6wy 6 лет назад +4

    Thank you for all the high quality videos bprp, they are much appreciated 💜

  • @holyshit922
    @holyshit922 Год назад

    Multiply by 4^{-1} mod 5 = 4

  • @chancerc7523
    @chancerc7523 Год назад

    Assume the equal signs are congruences, due to keyboard limitations.
    Given 4x=2 (mod 5),
    Can you just do:
    4x=2=12 (mod 5)
    => 12/4=3, hence
    {xEZ: x=3 (mod 5/1)} is set of all solutions.

  • @ruby_detected6089
    @ruby_detected6089 2 года назад

    Thanks​ for​ making​ this​ video, It​ really​ helps​ me​🙏😭

  • @PHOENIX-mv3uc
    @PHOENIX-mv3uc 4 года назад

    7x^3+2x^2+x congruent to 0[2]

  • @cerendemir9977
    @cerendemir9977 4 года назад +1

    This is just what I needed. Thank you!

  • @sugarfrosted2005
    @sugarfrosted2005 6 лет назад +10

    alternative method would be multiplying by the inverse of 4 aka 4. Granted this is harder in the general case because computing the inverse usually takes more time.

    • @blackpenredpen
      @blackpenredpen  6 лет назад +1

      yup!

    • @deidara_8598
      @deidara_8598 3 года назад

      With the Euclidian algorithm it usually only takes 2 or 3 rounds on smaller numbers, can be done in seconds on a calculator.

  • @alancristopher3539
    @alancristopher3539 2 года назад

    How Prove that for all n the following congruence holds: n^3≡n(mod 3)?

  • @kenza1024
    @kenza1024 10 месяцев назад

    Bro you helped me thank you

  • @AviMehra
    @AviMehra 6 лет назад +4

    No need to combine. Just add 5 to right side and you get the 1st

    • @blackpenredpen
      @blackpenredpen  6 лет назад +2

      Yup, that's exactly the way I had in mind : )

  • @giixgiggidygao4569
    @giixgiggidygao4569 3 года назад

    Is the last one x congruent to 2 mod 5

  • @snnwstt
    @snnwstt 2 месяца назад

    I have not perused all the answers, but we can clearly multiply both sides by 4.
    Left side, 4*4X = 16 X = 1 X (mod 5) --- since (A*B) | C == ( (A|C) * (B|C) ) | C
    Right side : 4* 3 = 12 = 2 (mod 5)
    So X = 2 (mod 5).
    In fact, in AX=B (mod C), when pgcd(A, C) =1, then A has an inverse, Q, such that Q*A=A*Q = 1 ( mod C).
    Note that 1 and (C-1) are their own inverse mod C, that is, (C-1)^2 = 1 mod C (since C^2 -2C + 1 = 1 mod C )
    Otherwise, A has a zero-producing-multiplier such that A*P = P*A = 0 (mod C) while neither A, neither P being 0 (such as 2*3 = 0 (mod 6) )
    An integer A can either have an inverse, either a zero-multiplier, but not both, for given modulo.
    So, C as prime number will have all its classes having an inverse (except its class 0) since C being prime cannot have A*B = C, with A and B integers between 1 and C-1, so modulo C cannot produce any zero-multiplier among its classes.
    If the pgcd(A, C) > 1, we may have multiple solutions ( 3X = 6 mod 9 has X=2, 5 and 8 as solutions), or none ( 3X = 5 mod 9 has no solution). The second member, B in AX=B mod C, must be divisible by D = pgcd(A, C) to have at least a solution, and owns D distinct solutions (among its classes) each of them "distant" for C\D
    (back to 3X = 6 mod 9, we have D=3, and the D solutions are distant of C\D = 3, as are 2+3 = 5, 5+3=8 and 8+3 = 2 mod 9 ).

  • @pritambhagat9662
    @pritambhagat9662 4 года назад

    4x=3(mod 5)
    -1x=3(mod 5)
    -1×-1x=-1×3(mod 5)
    x=-3(mod 5)
    x=2(mod 5)
    Yaa i got it ...Yahoo 🤘🤘🤘

  • @youturn9870
    @youturn9870 5 лет назад

    How we solve 2x congrent(mod7)?? Please

  • @redriot8726
    @redriot8726 3 года назад

    4 x k 2(mod3) find the value of integer x

  • @heyitsfrknfrank
    @heyitsfrknfrank 6 лет назад +2

    Lord god and savior! I have found you! My professor and the book made everything so much complicated!

  • @ajayagrawal1090
    @ajayagrawal1090 6 лет назад

    Awesome quick solver
    Great job!!!

  • @swetagupta6254
    @swetagupta6254 4 года назад

    Can one solve:5x is congruent to 1 modulo 12 with the same method??

  • @manishk45
    @manishk45 5 лет назад +2

    At 2:49 you went against my prediction. You should have multiplied both sides by -1.

  • @soumyachandrakar9100
    @soumyachandrakar9100 6 лет назад +2

    Blackpen-Redpen!!!!!! yay!!!!!!

  • @tptangeek814
    @tptangeek814 6 лет назад +2

    It's interesting how fast you solve these equations!
    I'm in highschool in France, and to solve for example 4x ≡ 3 [5] we do so:
    4x ≡ 3 [5] ⇔ ∃y ∈ ℤ, 4x − 5y = 3
    Considering the equation 4x − 5y = 3, where (x ; y) ∈ ℤ², we will first find a particular solution. In this case, we can just take x = − 3 and y = − 3, which leads us to 4x − 5y = 4 × (− 3) − 5 × (− 3) = − 12 + 15 = 3.
    Next, we can say that if (x ; y) is solution, then we have 4x − 5y = 3 = 4 × (− 3) − 5 × (− 3), so
    4x − 5y − (4 × (− 3) − 5 × (− 3)) = 4x − 5y + 4 × 3 − 5 × 3, and finally 4(x + 3) = 5(y + 3).
    At this point, we use the Gauss' theorem that tells us that because GCD(4 ; 5) = 1, (x + 3) can be divided by 5 and (y + 3) can be divided by 4. So we get x + 3 = 5k and y + 3 = 5k', where (k ; k') ∈ ℤ², which means that x ≡ − 3 [5], which can be written as x ≡ 2 [5].

    • @touhami3472
      @touhami3472 4 года назад

      Bonjour,
      Très vite resolu, en effet ! Ça fait une sacrée différence.
      J'ai été encore plus surpris quand il a divisé par 4 dans 4x=8 [5] : c'est tabou en France d'utiliser la division dans les congruences.
      Je me suis penché sur sa démonstration, je n'y ai jamais pensé auparavant.
      En fait, c'est très simple ;
      ax=b[n] il exst k dans Z tq:
      ax=b+n×k ce qu'on sait en France mais on n'allait pas plus loin:
      Ici, 4x=8[4] eqvt à 4(x-2)=5×k eqvt à 4 divise k car pgcd(4,5)=1 (Bezout):
      k=4×k' , k' dans Z. k existe bel et bien d'où l'équivalence.
      Bonne journée.

  • @healthybodytoday
    @healthybodytoday 4 года назад

    Thank you very much for these!

  • @mryip06
    @mryip06 4 года назад

    How can you solve 720n ≡ -1 (mod 2027) ?
    I can only make use of Chinese remainder theorem and solving Diophantine equation. I look forward to learn other methods from you. You are a great teacher. Thanks for your sharing.

    • @ouraghyoussef5612
      @ouraghyoussef5612 3 года назад

      Bonjour
      je pense que votre question concerne la résolution de l'équation 720n_=-1[2027]. Si c'est cela alors voila cette solution obtenue au moyen du schéma d'Ouragh
      2027....720.......587......133......55.......23......9.......5.....4.......1
      ...............-2.........-1.........-4.........-2........-2.....-2.......-1...-1
      .............442.....-157......128......-29.......12....-5........2...-1.......1
      et donc on aura n_=442*(-1)[2027] soit n_=2026[2027]
      Cordialement.

  • @khalidmomandd
    @khalidmomandd Год назад

    Can you solve this equation step by step (2)^x +x =37

  • @ms.p2832
    @ms.p2832 3 года назад

    3) x = 2(mod 5)

  • @plaustrarius
    @plaustrarius 6 лет назад +10

    i love this intro!!!
    sidenote! have you seen the simpson's 'fake fermat' equations?
    [3987]^12 + [4365]^12 = [4472]^12
    [1782]^12 + [1841]^12 = [1922]^12
    are these statements true? illustrate why or why not using only pencil, paper, and/or calculator.
    but not a computer or computer algebra program!

    • @brunoandrades5530
      @brunoandrades5530 6 лет назад +5

      Early Kyler The second one is pretty easy, you easily see that if it were true, that would imply that an odd number plus an even number equals an even number, and that's not true, you can do the same with the second but in mod 4 I think

    • @plaustrarius
      @plaustrarius 6 лет назад +2

      Bruno Andrades mod 3! But yes lol

    • @brunoandrades5530
      @brunoandrades5530 6 лет назад +2

      Early Kyler Oh, ty, I didn't actually try it, but it seemed like

    • @blackpenredpen
      @blackpenredpen  6 лет назад +4

      Thanks!!! And yes I have seen them and will do a video on them too.

    • @purushotamgarg8453
      @purushotamgarg8453 6 лет назад

      Early Kyler BlackPenRedPen can't do it using only pencil, paper and calculator....
      He needs the power of Blue marker......

  • @kinyutaka
    @kinyutaka 6 лет назад

    4X cong 3 mod 5, 5+3=8, 8/4=2. X=2.

  • @optionf4
    @optionf4 3 года назад

    tysm this video helped a lot :)

  • @MiketheCoder
    @MiketheCoder 4 года назад

    NEEDED THIS!!

  • @touhami3472
    @touhami3472 4 года назад +2

    Très intéressant !
    Merci beaucoup.

  • @chaosredefined3834
    @chaosredefined3834 4 года назад +2

    Alternatively:
    4x = 2 mod 5
    2 is not divisible by 4, try adding 5.
    4x = 7 mod 5
    7 is also not divisible by 4, try adding 5 a second time.
    4x = 12 mod 5
    12 is divisible by 4, and gcd(4,5) = 1, so we can divide by 4.
    x = 3 mod 5.
    If you add 5 five times, and it's never divisible by 4, then there is no answer.

  • @nobee6497
    @nobee6497 4 года назад

    4x=3(mod5)
    -x=3 (mod5)
    x=-3 (mod5)
    x=2 (mod 5)
    ----- final answer
    is the process correct?

    • @Apollorion
      @Apollorion 6 месяцев назад

      It is one of the correct processes. I myself added 0 mod 5 = 5 mod 5 to the equation and got a copy of question (1) en retour. Same question? -> Same results.

  • @lamug
    @lamug 4 года назад

    No se nada de inglés pero me ayudo mucho jajajaj gracias!!!

  • @yoavshati
    @yoavshati 6 лет назад

    Can you do the inegral of ln(ln(x))?

  • @reshmasahu1567
    @reshmasahu1567 5 лет назад

    What is the answer of 4x=3 mod 7

    • @Apollorion
      @Apollorion 6 месяцев назад

      It is (sort of) known.
      > 4-7=-3 => 4x=-3x mod 7 => (4x=3 mod 7 -3x=3 mod 7)
      > 7-1=6 => -1=6 mod 7
      And so:
      4x=3 mod 7 -3x=3 mod 7 x=-1 mod 7 x=6 mod 7 => x=6+7k with k being any integer

  • @Magic73805
    @Magic73805 6 лет назад +1

    Sir, Can I ask you something?

  • @Singlton
    @Singlton Год назад

    What is the purpose of doing this in the real world Applications?

  • @youturn9870
    @youturn9870 5 лет назад

    2x congrent 7 (mod17)

  • @obinnanwakwue5735
    @obinnanwakwue5735 3 года назад

    4x congruent to 3 (mod 5)
    4x congruent to -2 (mod 5)
    -x congruent to -2 (mod 5)
    x congruent to 2 (mod 5)
    yay!

  • @TheLaughterAsylum
    @TheLaughterAsylum 6 лет назад +1

    Is this correct
    Note :- please replace = sign with congruent sign.
    4x=3(mod5)
    X=-3(mod5)
    X=2(mod5) thats it!!!
    Please check my answer.

  • @not.u768
    @not.u768 2 года назад +1

    Hey plz help with this
    17x = 1 mod 5

    • @Apollorion
      @Apollorion 6 месяцев назад +1

      17x mod 5 = 15x+2x mod 5 = 2x mod 5
      1 mod 5 = 1 + 0 mod 5 = 1 + 5 mod 5 = 6 mod 5
      And so:
      17x = 1 mod 5 = 2x = 6 mod 5 => x = 3 mod 5
      That was very difficult, right?

  • @RandomDays906
    @RandomDays906 6 лет назад

    -x=-2(mod 5)
    x=2(mod 5)

  • @RainBarrelable
    @RainBarrelable 6 лет назад

    I love these videos!!!

  • @nikoskypseli1368
    @nikoskypseli1368 6 лет назад

    Excelent!!! what the result of a^((p-1)/k) mod p where a^(1/k) not integer.
    Thanks in advance.

  • @OjoNike-x4l
    @OjoNike-x4l Месяц назад

    Please l want you to solve some questions 4X =1

  • @soniakamboj2916
    @soniakamboj2916 6 лет назад

    x=2(mod5)

  • @denilsoncosta31415
    @denilsoncosta31415 6 лет назад

    You can show proof if the sum of each number of a big number is divided by 3, then this number is divided by 3.

  • @akmadisangkulapersonal
    @akmadisangkulapersonal 3 года назад

    Goodexplaining

  • @AmitKumar-ho3mr
    @AmitKumar-ho3mr 6 лет назад

    Sir,if a^5 b+3 is congruent to o,1,or -1 mod 9 then a^5 b is congruence to 5,6,or 7mod 9.why????????sir, i request u to explain it asap becoz i am in trouble.

    • @Apollorion
      @Apollorion 6 месяцев назад

      Let's start with, for ease of expression: a^5 b = y then the question becomes:
      y+3=x mod 9 with x equal to 0, 1 or --1 then why is y = 5, 6 or 7 mod 9 ?
      All you have to do is subtract 3 from LHS and RHS, and add 9 to the RHS to get it positive. You can do so because 9 mod 9 = 0 mod 9

  • @orlandomathlearningacademy9154
    @orlandomathlearningacademy9154 5 лет назад

    4mod5 =-1?? Remainder cannot be negative

  • @niclo6285
    @niclo6285 6 лет назад

    4x=3 (mod 5)
    4x=8 (mod 5)
    x=2 (mod 5)
    Am I right ?

  • @themathaces8370
    @themathaces8370 4 года назад

    2.
    Notice that 4x=2 (mod 5)=12 (mod 5)
    So we have 4x=12 (mod 5). Dividing both sides by 4, we have x=3 (mod 5)
    3.
    Notice that 4x=3 (mod 5)=8 (mod 5)
    So we have 4x=8 (mod 5). Dividing both sides by 4, we have x=2 (mod 5)
    Remark:
    Note that the 'mod 5' will stay no matter what. This means that we can try values, and guess and check.
    Best,
    The Math Aces

  • @SKris7
    @SKris7 4 года назад +1

    Is 8 mod 5 even legit?

  • @ZelForShort
    @ZelForShort 6 лет назад +1

    What's mod tho. New concept for me

    • @blackpenredpen
      @blackpenredpen  6 лет назад

      Alpha Designs you can watch my previous video. :)

    • @ZelForShort
      @ZelForShort 6 лет назад +1

      blackpenredpen Thank you

  • @tawfeeqmuallem9086
    @tawfeeqmuallem9086 5 лет назад

    mfkr i opened the video for the third example

  • @SoyFerchow
    @SoyFerchow 6 лет назад +1

    I love you.

  • @carlosrivera9901
    @carlosrivera9901 4 года назад

    Puedes ayudarme con este ejercicio x^5 - 3x^4 + x - 2=0( mod 165)

  • @bhsacademy1590
    @bhsacademy1590 Год назад

    Hello sir

  • @emersonrodriguescoutinho1344
    @emersonrodriguescoutinho1344 6 лет назад

    Obrigado!!!

  • @roannemaeordas3184
    @roannemaeordas3184 4 года назад

    Please enlighten me please. 😭

  • @arphano51
    @arphano51 4 года назад

    On n'a pas le droit de diviser des congruences aussi facilement que ça. Il suffit de faire un tableau de congruences et on trouve facilement les solutions

  • @suneetiyer81
    @suneetiyer81 6 лет назад

    Hey! could someone please help me with this problem on geometry of complex numbers?
    Find the centre, radius and arc length of the arc of the circle formed by the set of all complex numbers satisfying arg [(z-5+4i) ÷ (z+3-2i)] = -π/4.

  • @TheLaughterAsylum
    @TheLaughterAsylum 6 лет назад +2

    Yayyyy

  • @dusutiwary9456
    @dusutiwary9456 6 лет назад

    Yay!!!!!

  • @no0rd0ll26
    @no0rd0ll26 5 лет назад

    Bhai ap apna bolny ka styl thk kryn xara b ni smj ati apki
    ...actions e ni khtm hoty ap k tou

  • @YeWinHtet-e3r
    @YeWinHtet-e3r 11 месяцев назад

    lee le kmkl

  • @onkarrout
    @onkarrout 10 месяцев назад

    That's was damn easy to learn, thanks bruh! 🫂❤️

  • @kidszone6850
    @kidszone6850 4 года назад

    x=2(mod 5)