A Nice Rational Equation Challenge | Math Olympiad | Algebra

Поделиться
HTML-код
  • Опубликовано: 30 окт 2024

Комментарии • 8

  • @johnlv12
    @johnlv12 2 месяца назад

    amazing

  • @9허공
    @9허공 Месяц назад +1

    from 4:00 a(a + 6)(a + 3)(a - 3) = -45, let t = a + 1.5(which is mean value of 4 terms)
    then (t - 1.5)(t + 4.5)(t + 1.5)(t - 4.5) = -45 => (t^2 - 1.5^2)(t^2 - 4.5^2) + 45 = 0
    => 16t^4 - 360t^2 + 1449 = (4t^2 - 21)(4t^2 - 69) = 0
    t^2 = 21/4 or 69/4 => we can get t , a = t - 1.5 and x = a^2

  • @RashmiRay-c1y
    @RashmiRay-c1y 2 месяца назад

    Setting t = √x, we get t^4+6t^3-9t^2-54t+45=0. Let us try (t^2+at-3)(t^2-bt-15) = 0> a+b=6 and ab=9 > a=b=3. The quartic equation factored out into two quadratics, t^2+3t-15=0, t^2+3t-3=0 The roots are t= 1/2[-3 +/-√69], t= 1/2[-3 +/-√21]. Of these, only t=1/2[-3+√69], 1/2[-3+√21] are valid. So, x=1/2[39-3√69], 1/2[15-3√21].

  • @ZhilinChen-my7tp
    @ZhilinChen-my7tp 2 месяца назад +1

    My answer is right.

  • @sundaramsadagopan7795
    @sundaramsadagopan7795 2 месяца назад

    X=78/9 and root X=9

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 месяца назад

    (XSqrt[X])/9+5/(Sqrt[X]+6)=Sqrt[X] X=(15-3Sqrt[21] )/2=7.5-1.5Sqrt[21] X=(39-3Sqrt[69])/2=19.5-1.5Sqrt[69]

  • @gregevgeni1864
    @gregevgeni1864 2 месяца назад

    Let √x = t, (x , t > 0) (*).
    The given equation equivalent with the equation, after some algebra,
    t^4 + 6 t^3 - 9 t^2 - 54 t + 45 =0 or
    (t^2 + 3 t - 3) • (t^2 + 3t - 15) = 0 (#).
    The t^2 + 3 t - 3 =0 have roots
    t = (- 3 ± √21)/2 (**).
    The t^2 + 3 t - 15 = 0 have roots
    t = (- 3 ± √69)/2 (***).
    From (*), (**), (***) only the roots
    t = (-3 + √21)/2 and t = (-3 + √69)/2
    are accepted.
    From (*)
    x = t^2 =>
    x = [(-3 + √21)/2]^2 = (15 - 3√21)/2
    and
    x = [(-3 + √69)/2]^2 = (38 - 3√69)/2 ..
    Note (#). (Old classic method).
    t^4 + 6 t^3 - 9 t^2 - 54 t +45 =
    ( t^2 + a • t + b) • (t^2 + c•t+ d) =>
    a + c = 6
    b + d + a • c = - 9
    a • d + b • c = - 54
    b • d = 45 .. ( a, b, c, d integers) ..
    Because b • d = 45 =>
    b • d = ( - 1)(-45) = (-3)(-15) = (-5)(-9) = 1 • 45 = 3 • 15 = 5 • 9 ...
    We easily observe that
    ( b, d) = (- 3, -15) and it follows that
    ( a , c) = ( 3, 3) .

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 месяца назад

    {x+x ➖ }{x +x ➖}/9+9 ➖ +{5+5 ➖ }/{x+x ➖ 6+6 ➖ }= {x^2+x^2}/18+10/{x^2+12}= {x^4/18+10/12x^2 }= 10x^4/30x^2 2^5x^2^2/12^18x^2 1^1x^1^1/12^9^9x^1 /3^43^2^3^2 /1^1^2^1^1^3^1 /23 (x ➖ 3x+2).