I integrated the quadratic formula

Поделиться
HTML-код
  • Опубликовано: 19 ноя 2024

Комментарии • 526

  • @blackpenredpen
    @blackpenredpen  Год назад +98

    Check out how to differentiate the quadratic formula: ruclips.net/video/JEcE-wDRMCk/видео.htmlsi=Uq1p1KYNj-Kpu5g2

    • @KamalasBillion
      @KamalasBillion Год назад

      Integrating the quadratic equation = god mode! You sir are a badass!

    • @abishworpandit5200
      @abishworpandit5200 Год назад +1

      Well everything has physical meaning so what does it physically mean?

    • @KamalasBillion
      @KamalasBillion Год назад

      @@abishworpandit5200 🤔

    • @1Konu1Zoru
      @1Konu1Zoru 10 месяцев назад

      dont rely on AI and dont ask AI to any math question.. it is very dumb in that area and still thinks that it knows the answer.. but in near future it will eventaully learn to do math and most likely beats any human being on earth :) wolfram is around for a long time and it is best tool to check results or solve something for the timebeing.

  • @BradleyG01
    @BradleyG01 Год назад +3542

    If there’s one thing that ChatGPT tells us it’s that AI won’t be replacing math professors anytime soon.

    • @aashsyed1277
      @aashsyed1277 Год назад +58

      Well that may not be true in the future....

    • @resurrectedpa
      @resurrectedpa Год назад +92

      ​@@aashsyed1277won't be soon 😅

    • @acuriousmind6217
      @acuriousmind6217 Год назад +76

      there's already multiple AI's online that can integrate any integratable function and give you the full meticulous steps idk if you count that as replacing math professors.

    • @littlegrass320
      @littlegrass320 Год назад +180

      @@acuriousmind6217 a math professor does a lot more than integrating functions, they deal with a lot more abstract concepts that don't have a set way to do them. Until those AI's can understand abstract concepts, math professors won't be going anywhere

    • @teelo12000
      @teelo12000 Год назад

      ChatGPT write me a witty youtube comment reply.

  • @badamson
    @badamson Год назад +932

    If you change the last integral (1/(u^2-b^2)) with diff of two squares you can split it up with partial fractions and use natural log… although it turns out the end result is actually an identity for inverse hyperbolic tan

    • @Ninja20704
      @Ninja20704 Год назад +90

      They aren’t entirely the same because of the domain difference.
      tanh^-1 (x) is only valid for -1

    • @bobbyheffley4955
      @bobbyheffley4955 Год назад

      ​​@Ninja20704 if x>1 or x

    • @liamernst9626
      @liamernst9626 Год назад +7

      w pfp

    • @mrfarooqkhan8454
      @mrfarooqkhan8454 Год назад +2

      ​@@Ninja20704bro can you explain why sometimes we get two different answers for the same integrant?
      How to decide which one is correct?

    • @Ninja20704
      @Ninja20704 Год назад

      @@mrfarooqkhan8454 Usually it is because the two different answers are actually just off by a constant, so they are essentially the same as far as the indefinite integral is concerned. One example is secx*tanx.
      In this case, the different answers we are getting is more of domain, but the functions have the same value for all x in the common domain.
      The integral of 1/(1-x^2) has 3 seemingly different answers: tanh^-1 (x), coth^-1 (x) and ln|(1-x)/(1+x)|
      tanh^-1 (x) = 1/2*ln[(1-x)/(1+x)], which is only good for -1

  • @CorrectHorseBatteryStaple472
    @CorrectHorseBatteryStaple472 Год назад +74

    I love the grin at 6:03 with the inverse hyperbolic tangent. Math is fun and your subtle humour like this makes it fun.

  • @skyethebi
    @skyethebi Год назад +129

    5:28 You can also use partial fractions for this integration u^2 - b^2 = (u - b)(u + b)
    1/(u - b)(u + b) = 1/2b(u - b) - 1/2b(u + b)
    And that way you don’t end up with inverse hyperbolic trig

    • @xninja2369
      @xninja2369 Год назад +1

      I was gonna write sameee

    • @perfectman3077
      @perfectman3077 Год назад +4

      Nerd

    • @xninja2369
      @xninja2369 Год назад

      @@perfectman3077 stupid Sigma 10 year old kid , your place is not here go somewhere else dude 🤡
      If you want to learn something than learn, if don't than get out ..

    • @joyboy69lffy
      @joyboy69lffy Год назад

      so u will get 1=A(u-b) +B(u+b)
      so you cant find the value of A and B since you dont know neither the value of u nor b

    • @skyethebi
      @skyethebi Год назад

      @@joyboy69lffy My bad. You can still use partial fractions since b is constant with respect to the integration but you need to divide by b. I updated my answer so it should be right now.

  • @acuriousmind6217
    @acuriousmind6217 Год назад +249

    A much more interesting approach is differentiating each quadratic formula with respect to each variable (a, b, c) and observing how each variable contributes to the fluctuation and the identification of the sweet spot for every variable that results in a more diverse set of solutions.

    • @dekippiesip
      @dekippiesip Год назад +29

      Sure, a lot of cool things could be done with this. Take the solution set as a function with 3 variables, include complex numbers if you like, and look for all sorts of patterns.
      I'm thinking of stuff like maximizing the distance between 2 solutions for all vectors (a,b,c) of fixed length and shit like that. It's a heavily unexplored topic!

  • @ahmedalhomaide4416
    @ahmedalhomaide4416 Год назад +29

    Bro, I just graduated from high school but I can't ignore your video titles... Great as USUAL!

  • @ethancasillas7325
    @ethancasillas7325 Год назад +27

    There is absolutely no reason for me to have watched this, I'm not in -or ever going to take- any calculus class where I have to integrate the quadratic formula. Yet here I am, loving every second of this video :)

  • @MathNerd1729
    @MathNerd1729 Год назад +153

    The last part reminded me of when I asked 2 different AI models (not ChatGPT) about whether they can prove Euler's Sum of Powers Conjecture . . . both of them had factual inaccuracies in their responses and one of them even claimed that it's currently unknown

    • @acuriousmind6217
      @acuriousmind6217 Год назад +8

      its the same as asking google a long question... at the end of the day its trained on pattern recognition you have to de-personify the ai so to speak when approaching it with complicated questions

    • @decaydjk8922
      @decaydjk8922 Год назад +14

      All they are is token prediction systems, just a more advanced version of the predictive text in your phone. They can't "do" math or anything so no, that's not surprising

    • @abuabdullaahiwaaaishatah8235
      @abuabdullaahiwaaaishatah8235 Год назад

      Lol

    • @lolerie
      @lolerie Год назад +1

      Because only GPT 4 is AGI. Above human level.

    • @sunnohh
      @sunnohh Год назад +3

      Yeah ai is dogshit at medium hard or slightly complex

  • @abyzdoof8821
    @abyzdoof8821 Год назад +12

    i love how we can just see all of those dry erase markers on standby in the bottom right. video’s fantastic as always, keep up the great work!

  • @jamesdcarroll1
    @jamesdcarroll1 Год назад +20

    Its been 30 years since I took this in college and I can still fall asleep halfway through.

    • @Alkis05
      @Alkis05 Год назад +3

      Who said you would forget how to do the things you learned to do in your freshman calculus course?

  • @dayzimlich
    @dayzimlich Год назад +52

    Great stuff, bprp! I love your videos. You teach but you do not talk down to the audience and you bring a catchy sense of humor and fun. Here's to your continued success!

    • @blackpenredpen
      @blackpenredpen  Год назад +7

      Thank you very much for your nice comment!

  • @panhandlejake6200
    @panhandlejake6200 Год назад +30

    So definitely an academically interesting exercise. Is there any insight about quadratics and their solutions that can be learned from this result?

  • @tuseroni6085
    @tuseroni6085 Год назад +5

    that trick of adding in a -b and a +b blew my mind. it makes perfect sense in retrospect, -b+b=0 so if you have something that is also something + 0 and thus you can put anything in so long as it cancels out to 0...

  • @ivanrodionov9724
    @ivanrodionov9724 Год назад +54

    Is there a physical interpretation to integrating the quadratic formula with respect to the polynomial? Does it tell us anything special?

    • @spearmintlatios9047
      @spearmintlatios9047 Год назад +4

      If we were to create a graph with an a axis and an x axis, where x is vertical (where y usually is) and a is horizontal (where x usually is), this would tell us the area under the curve of the graph. x = (-b+sqrt(b^2-4ac))/2a in terms of b and c which are constants. That’s really it, it’s not too special. If you wanted to see what this graph would look like you could go on Desmos and substitute x for y and a for x, and then create sliders for B and C.

    • @ivanrodionov9724
      @ivanrodionov9724 Год назад +4

      @@spearmintlatios9047 Well that it can be viewed as an an area under a curve is one interpretation, however this is not what I am asking. He is doing something much more fun here, see, the quadratic formula is a function in polynomial of 2 degree space which has 3 degrees of freedom, a,b,c. It therefore maps a unique polynomial represented by the point (a,b,c) in the space and maps it onto two values which are it's roots.
      Now, when he integrates the quadratic formula, with respect to a, this is the question on how it changes the mapping and what does it tell us now. I am 99% sure there is quite a bit more going on here.

    • @spearmintlatios9047
      @spearmintlatios9047 Год назад

      @@ivanrodionov9724I kinda get what you’re saying but I’m rusty on calc 3 stuff tbh.
      If you want, you can represent the quadratic equation as a graph mapping the function of a, b, and c to a value of x. or f(a, b, c)=x. this would be a 4 dimensional graph which is somewhat beyond our imagination, but everything should still apply.
      Since we only integrated with respect to A here, B and C are still able to be changed within the integral. pretend that B is equal to 1 for now. Then we can have a 3D graph of f(a, c) = x. In this case, we have a the a and c axis representing our domain, and an x axis representing our range.
      So for any point on the (a, c) plane, the output of this function is some “height” in the x axis creating the point (a, c, x).
      If this is the case, and we assume B is constant, then this integral represents the area summation of the height from the x output to the flat ac plane from a given start and end point a0 and a1, So it would still just be a 2D area found from an infinitesimal slice of a 3D graph.
      It is cool that we could move this slice by changing our bounds of a0, a1, and C. You could imagine changing these bounds as moving and stretching a tall piece of paper through the 3D space of the function, and calculating the area of that paper if you slice off all negative values and everything above the x points.
      To calculate the volume of the shape this graph makes, we would have to integrate by another bounds as well, a double integral.
      But the same logic works as well when we include B again. The integral would simply be a slice in a 4D shape that has X as the output.
      Unfortunately, we can’t just set X to 0 and have a graphical interpretation of 0 = integral (g(a, b, c))da. I don’t think there actually any representation there? If we wanted to find an integral that works here we would probably have to move some terms around before hand and treat it as a differential equation. Correct me if I’m wrong

    • @spearmintlatios9047
      @spearmintlatios9047 Год назад +2

      @@ivanrodionov9724 after reading what you’re saying again I see you’re talking about something entirely different. Is there any tool that could create a mapping similar to what you’re talking about? I think what I was discussing might relate when you consider he only integrated using a plus and not a minus

    • @minseok8726
      @minseok8726 Год назад

      @@spearmintlatios9047any applications in Engineering could you think of? Aerodynamics maybe

  • @thbb1
    @thbb1 Год назад +46

    Beautiful, but can we find a geometric interpretation of this integral? Or at least use it to gain some insights on the regions where the determinant is positive or negative as a function of the first coefficient of the trinome?

    • @gileadedetogni9054
      @gileadedetogni9054 Год назад +1

      Maybe f(a)=all the formula

    • @Jordan-zk2wd
      @Jordan-zk2wd Год назад +6

      Someone correct me if I'm wrong, but utilizing the intuition of the mean value theorem I think this means: if you vary a from some value a0 to a1, then the mean value of x which solves ax^2+bx+c=0 will be [f(a1)-f(a0)]/[a1-a0], where f(a)=-(b/2)ln|a|+sqrt(b^2-4ac)-(1/b)tanh^-1(sqrt((b^2-4ac)/b)* . I tried running it on desmos, I'm tired so I might have did this wrong, but here's an example of what I mean: from a=1 to a=2, the mean value of one of the roots of ax^2+3x+5=0 is -2.66324ish. I did have to throw in a negative sign at the end to make it all work, which means I'm made some small error along the way, but visual check of a few examples seem to confirm that it does work.
      * Important caveat, this will be the average value of one of the roots as you very a, the other one would have a slightly different definition of f(x) for the choice of the negative root of b^2-4ac, and thus give you a different average value corresponding to that root. @blackpenredpen ?

  • @gamingbeast5755
    @gamingbeast5755 Год назад +2

    Math Professors are the real JOD people on Earth....

  • @MayurAvad
    @MayurAvad Год назад +12

    Really enjoyed this one !

  • @granthqweqw5244
    @granthqweqw5244 Год назад +12

    Would love to see triple integration with respect to all variables there!

  • @jok2000
    @jok2000 Год назад +7

    If you want ChatGPT to do advanced stuff you tell it to write a python program that does what you want like plot a function, do a symbolic integration or even get it to create a rotating globe in OpenGL. I've done all of these things with it and more... a subway station mapper using google maps API and TKinter etc. Some, like the maps API require a bit if tweaking but not the integrator.

  • @zelda12346
    @zelda12346 Год назад +7

    "I integrated the quadratic formula" has the same energy as "I sawed this boat in half!".
    And since you differentiated this already, "I sawed ANOTHER boat in half!"

    • @pulkitgupta5367
      @pulkitgupta5367 Год назад

      Its giving the same energy as that flex tape ad where he cuts a boat in half and then tapes it back together: ruclips.net/video/0xzN6FM5x_E/видео.html

  • @A-0II0Io
    @A-0II0Io Год назад

    😂😂😂 the last part of your amazing video was amazing. Wow...

  • @mynamejeff69302
    @mynamejeff69302 Год назад +1

    Last part of integration with u^2-b^2 can be done with writing it as( u+b)(u-b) and then matching the numerator to get 1/2b^2 ln(u-b)/(u+b)

  • @TranquilSeaOfMath
    @TranquilSeaOfMath Год назад +1

    Love the video. Easy to follow; well explained. I also like how you show the technology failure at the end.

  • @gachanimestudios8348
    @gachanimestudios8348 Год назад +3

    Legit the first question i asked from that title was "with respect to what?"

  • @SomeoneCommenting
    @SomeoneCommenting Год назад +2

    It would be interesting to compare the integrals of da, db, and dc for the same curve parameters to see what happens.

  • @gamingbeast5755
    @gamingbeast5755 Год назад +1

    Nice Explanation Sir...

  • @adrienanderson7439
    @adrienanderson7439 Год назад +7

    Another one that's fun is the limit as a goes to 0, It gives an interesting result that makes sense when you think about it. If you really want a challenge you could do the limit of the cubic formula as the x^3 coefficient approaches 0 to see if you can get the quadratic formula

    • @euler1
      @euler1 Год назад +3

      I did that like 2 month ago and thought it was very nice how the limit works out at the end. I don't know what you mean with the coefficient of x^3, what equation will you apply the limit to?

    • @adrienanderson7439
      @adrienanderson7439 Год назад

      @@euler1 there is a cubic formula but it is kind if complicated

    • @adrienanderson7439
      @adrienanderson7439 Год назад

      @@euler1 The solutions to ax^3+bx^2+cx+d=0 is given by the following: let u=b^2-3ac, let v=2b^3-9abc+27a^2d, let w=((v+-(v^2-4u^3)^(1/2))/2)^(1/3)
      where we can use any root for each cube or square root. Then x=(-1/(3a))(b+w+u/w) gives the roots

    • @euler1
      @euler1 Год назад

      @@adrienanderson7439
      It's the first I see this thanks for the explanation, I am curious to try it out but I think I will just look up a proof for it as I don't have that much time xd

    • @adrienanderson7439
      @adrienanderson7439 Год назад +1

      @@euler1 Yeah honestly I haven't done it myself and I tried to today but it really gets into the weeds

  • @disgracedmilo
    @disgracedmilo Год назад +1

    the sequel we needed

  • @winghei10
    @winghei10 Год назад +9

    Teacher: Maybe there is a mistake.
    Please verify the answer by differentiate the answer.

  • @kranhat
    @kranhat Год назад +5

    0:10 beep sound

  • @holyshit922
    @holyshit922 Год назад +1

    6:09 If u is in interval (-1,1)
    but if u is outside this interval you have b/u as argument of inverse hyperbolic tangent

  • @arsalmathacademy
    @arsalmathacademy Год назад +2

    I am always fan of this great person, brilliant brain

  • @merixan9322
    @merixan9322 Год назад +1

    I literally just watched the differentiating video of the quadratic formula yesterday

  • @sless6928
    @sless6928 Год назад

    I'm just amazed you found 3 working whiteboard markers.

  • @OleJoe
    @OleJoe Год назад +1

    This is wild, man!

  • @DatBoi_TheGudBIAS
    @DatBoi_TheGudBIAS Год назад +3

    ive figured out a long time (by curiosity) dat chatgpt absolutely sucks with math problems. it can fail in something as simple as a quadratic equation, let alone a full integral

  • @mqb3gofjzkko7nzx38
    @mqb3gofjzkko7nzx38 Год назад +2

    I just noticed the hundreds of black and red markers in the bottom right corner.

  • @Tasz_
    @Tasz_ Год назад

    Came for blackpenredpen got blackpenbluepenredpen what a day to be alive

  • @Protactinium91
    @Protactinium91 Год назад +2

    I’m looking forward to learning hyperbolic tangent!

  • @dr0g_Oakblood
    @dr0g_Oakblood Год назад

    Last segment is a perfect example of ChatGPT just making stuff up lmao

  • @99chartered
    @99chartered Год назад

    Thanks so much, it was fun!

  • @honestabe_9207
    @honestabe_9207 Год назад

    The solution for either case (+/-) excluding hyperbolic functions when integrating with respect to "a": -b*ln|√((b^2)-4*a*c) ± b| ± √((b^2)-4*a*c) + C

  • @NonTwinBrothers
    @NonTwinBrothers Год назад +5

    Im glad I woke up at 3am to enjoy this 😂

  • @Krish-su4oh
    @Krish-su4oh Год назад +1

    Last part was very meaningful 😂😂❤

  • @Noobthepro0
    @Noobthepro0 Год назад

    Instead of using inverse hyperbolic function as the integral of 1\(u^2-b^2), you may also use ln{(u-b)/(u+b)}/2b. That's how GPT might have also got the answer in terms of natural log

  • @General12th
    @General12th Год назад +1

    Hi Dr. Pen!
    Very cool!

  • @MathFromAlphaToOmega
    @MathFromAlphaToOmega Год назад +2

    Cubic formula next, please!

  • @perspicacity89
    @perspicacity89 Год назад

    Fantastic video, thank you.

  • @michaelbaum6796
    @michaelbaum6796 Год назад +1

    Nice solution - great👍

  • @vaccino3359
    @vaccino3359 11 месяцев назад

    Applied maths: Useful things that would probably come handy in life
    Pure maths:

  • @seanoneill2098
    @seanoneill2098 Год назад +1

    You are doing good things !!

  • @benberlowitz6381
    @benberlowitz6381 Год назад +1

    Please do a video where you triple integrate with respect to all 3 im genuinely intrigued what the result would be (is it even possible??)

  • @StepKar
    @StepKar Год назад +2

    Integrate the qubic formula next

  • @muralidharrangaswamy9643
    @muralidharrangaswamy9643 Год назад

    I think you can also expand the denominator of the last integral into partial fractions and then express the result as a difference of two logarithms

  • @francaishaitam6708
    @francaishaitam6708 6 месяцев назад

    for the inverse hyperbolic tan part,you've better to go with a partial fraction decoposition ,since we don't now the domain of integration , it's ok to go with the inverse hyperbolic tan only if a is from (-1,1)

  • @promethius7820
    @promethius7820 Год назад

    This integral is basically the unbounded interval is basically the terms for the "missle knows where it is" problem, isnt it?

  • @inverted2533
    @inverted2533 9 месяцев назад

    you know what, im startin to like this guy

  • @cameronskellams5670
    @cameronskellams5670 Год назад +1

    Thats hectic! Love the definitive proof at thr very end that chatgpt clearly has discalculia 😂

    • @jok2000
      @jok2000 Год назад +1

      Just ask it to write a symbolic integrator in Python.

  • @Alkis05
    @Alkis05 Год назад

    Wolframalpha still has a lock on the freshmen calculus student market.

  • @fredrickfred4621
    @fredrickfred4621 9 месяцев назад

    You can also use trig sub to avoid hyperbolic tan

  • @eliteteamkiller319
    @eliteteamkiller319 9 месяцев назад

    The ending had my rolling.

  • @guliyevshahriyar
    @guliyevshahriyar Год назад

    Very good lesson, thanks.

  • @pro_learner.sohamkakkar
    @pro_learner.sohamkakkar Год назад +2

    Wouldn't it be better to do trigonometric substitution in the 2nd integral instead of substituting the root as an algebraic variable?

  • @madbrad6282
    @madbrad6282 Год назад

    That was fun to watch.

  • @PunyaMalhotra
    @PunyaMalhotra Год назад +1

    The last integral
    dU÷U²-b²
    Is equal to (1÷2b)×ln|(u-b)÷(u+b)|
    The above result is definitely okay, idk about the one you used(i am nkt saying yours one is incorrect, its just that i never saw that formula😅)

  • @pandabearguy1
    @pandabearguy1 Год назад +1

    I got the right answer with chatGPT (gpt 4 w/ plugins).
    Now integrate the cubic formula

  • @composerlmythomorphic2635
    @composerlmythomorphic2635 Год назад

    I got another (perhaps complicated solution: Suppose the integrand is x, where y=ax^2+bx+c. Then dy/dx=2ax+b, and dy/da=x^2. Hence da/dx=(2ax+b)/x^2. Then integral=int[(x)(2ax+b)/x^2]=int[2a+b/x]=2ax+b lnx +C

  • @parkerschmitt1594
    @parkerschmitt1594 Год назад +1

    Do the triple integral over a b and c

  • @adarsh5997
    @adarsh5997 Год назад +1

    5:39 but the integrals of the form dx/(x²-a²)= 1/2a*ln(x-a)/(x+a) where ln is natural log

  • @romanbykov5922
    @romanbykov5922 Год назад +1

    very interesting video, blackpenredpenbluepen! :)

  • @tomasbeltran04050
    @tomasbeltran04050 Год назад

    It's been a while since I last saw one of your videos

  • @yigiteldek
    @yigiteldek Год назад

    i retried asking the integral to gpt couple times and with some hand it eventually integrated the formual exactly as in the video eventually

  • @alvaroarizacaro3451
    @alvaroarizacaro3451 Год назад

    Muchas gracias. Muy bonita esta integral.

  • @said_qurbanov
    @said_qurbanov Год назад +1

    Bro will integrate my life

  • @cheeseparis1
    @cheeseparis1 Год назад +1

    Thanks, this is what I needed to prove the last Fermat theorem. This may not fit in a RUclips comment actually.

  • @Jesuisunknown
    @Jesuisunknown Год назад

    I don't understand a lot but I'm getting interested again to learn the basics of Calculus

  • @GuilhermeSilva-or8ud
    @GuilhermeSilva-or8ud 9 месяцев назад

    amo suas questões 🫶 um abraço do Brasil

  • @pradhyumnajadhav9137
    @pradhyumnajadhav9137 Год назад

    please do triple integration on this next

  • @pwkn86
    @pwkn86 Год назад +1

    i pay for gpt 4 and its all in how you ask it, so far its done everything you have as well. and was very close to the same answer. AI can and will replace useless professors, as professors are not available to answer students questions at the scale of universities. we NEED ai to help students lean and ask questions when they are lost or FEEL lost. gpt has helped me immensly in my exploration and understanding of calculus. so far, it hasnt been wrong once.

  • @deldc
    @deldc Год назад

    My eyes are burning! Too many knowlegde! This is insane!!!!

  • @justanotherguy469
    @justanotherguy469 Год назад

    I love your t-shirt.

  • @parzflash1619
    @parzflash1619 Год назад +1

    We got the integral but can you explain the solution graphically as integration with limits gives area and what would the area of this graph be

  • @teddy05p
    @teddy05p Год назад +3

    Great video !! I have an interesting problem for you:) Infinite series from k =2 of 1/(ln(k)^(ln(ln(k))) we are only allowed to use limit comparison or comparison. :)

    • @tomctutor
      @tomctutor Год назад

      lim (k=2 .. inf) f(k) = A + lim(n=27..inf) f(n) where A is some number and f(n) = 1/(ln(n)^(ln(ln(n))).
      Each term in the expansion of f(n) is now strictly positive, since ln(ln(27)) > ln(ln(e^3)) = ln(3)>ln(e) = 1, i.e. positive.
      So f(n) series terms are bounded above by 1, so only need to consider a monitonic decreasing series.
      Oh and also determine the leading constant A value.

    • @teddy05p
      @teddy05p Год назад

      @@tomctutor numerically this series diverges, so it is not bounded by 1.

    • @teddy05p
      @teddy05p Год назад +1

      @@tomctutor oh sorry misinterpreted your statement, it is, youre talking about the terms :)

    • @tomctutor
      @tomctutor Год назад +1

      @@teddy05p Yes I did not comment on wether or not the series converges. If alternating then it would converge, but it isn't alternating as I shown.

  • @berenedain8427
    @berenedain8427 Год назад

    "He's too dangerous to be kept alive!"

  • @arghamaji8234
    @arghamaji8234 Год назад +2

    Yes I have integrated the sridharacharya formula

  • @arnold-pdev
    @arnold-pdev Год назад

    Worth noting this function has a domain restricted to the interval 0 =< 4ac =< b^2. The second inequality comes from the discrimant (existence of roots). The first is a statement that either a and c are both negative or both positive. This is weird to me!

  • @Napsap18
    @Napsap18 10 месяцев назад

    Love how he doesn’t say everything but says everybody

  • @blatinobear
    @blatinobear Год назад

    Whenever I see calculus integration and above I’m like, “come on y’all, what are we doing here, let’s go home”

  • @jannegrey
    @jannegrey 9 месяцев назад

    Have you ever tried differentiating/integrating quadratic formula?
    Yes, basically as soon as I learned how to do basic derivatives from limits and noticing that circle/sphere calculations look like they have been integrated/differentiated using "power rule" (I think that's what it's called). 2*pi*r, pi*r^2 and 4/3 pi r^3 looked too much like coincidence. So I looked at quadratic formula (I also wondered back then what would happen if I did look for zeros when "delta" is "negative" - of course without imaginary numbers it is "harder" to do. Still doable in some cases and if you don't mind going a bit outside real numbers for rules). Sadly my knowledge was insufficient - had I tried it when I was more proficient it would likely help.

  • @pskv20
    @pskv20 Год назад +1

    If it is the quadratic formula, why not to use this fact?
    ∫ x da = xa - ∫ a dx, where ax^2+bx+c=0 -> a=-(bx+c)/x^2
    ∫ x da = ax + ∫ (b/x+c/x^2) dx = ax + b ln |x| - c/x + C_1
    and substitute x
    :)

  • @EyeSooGuy
    @EyeSooGuy 10 месяцев назад

    Hey blackpenredpen … can you give us a calc THREE problem? I know that involves 3D shapes on a triple order graph. 😁

  • @danielsaldivar5622
    @danielsaldivar5622 Год назад

    Doing math with a smile!

  • @n4p3r0
    @n4p3r0 Год назад

    You should do it with respect to b and c next :3

  • @thec2359
    @thec2359 Год назад

    Completing side-quests

  • @Saber09
    @Saber09 9 месяцев назад

    I am drunk right now but dude this video is absurd, it would never get to my mind this solution! Great! Have a good day :D

  • @jacobblum618
    @jacobblum618 Год назад +1

    Could you do double integration to integrate based of two variables?

    • @blackpenredpen
      @blackpenredpen  Год назад

      You can see my 100 integrals part 2. I did about 20 double integrals there toward the end.

  • @duckyoutube6318
    @duckyoutube6318 Год назад

    Math is fun. Whenever i learn a new tool/technique/axiom i love playing with it until i stumble on to something that requires a new tool or a combination of techniques to solve.
    The first derivative/integral/summation i did i still remember because it was like i learned a new cheat code of the universe. Summing all countable numbers and then asking the question, 'does this work with x^2 too?' And learning that integration and summation are sometimes the same thing blew my mind.
    I love math. No im not in college and no im not looking to get a degree, im just fascinated by math and its a great hobby to keep my mind sharp as i age.

  • @acesu5785
    @acesu5785 Год назад

    What I've noticed about every math application solver or ai's is that they never used standard forms

  • @markwu2939
    @markwu2939 Год назад

    Try this. Because ax^2+bx+c=0, da=b/x^2+2c/x^3. Then the integration equals ∫xda. ∫xda = ∫(b/x+2c/x^2)da = blnx-2c/x + k. Give x=(-b+sqrt(b^2-4ac)/2a back. Get a similar answer. I believe ln(x) and arctanh(x) can be transformed.