Binompdf and binomcdf functions | Random variables | AP Statistics | Khan Academy

Поделиться
HTML-код
  • Опубликовано: 2 ноя 2024

Комментарии • 13

  • @ernestyegha371
    @ernestyegha371 5 лет назад +10

    I love your silliness because it actually helped me figure out this problem on Binomial formular

  • @youknowme9897
    @youknowme9897 3 года назад +5

    I have an exam tomorrow and I'm from Austria. I couldn't find any German videos and you made an easy to understand video in English. Many thanks!

  • @johannamichaels1505
    @johannamichaels1505 6 лет назад +5

    So helpful, very concise explanation. Thanks!

  • @waffle4947
    @waffle4947 2 года назад +2

    My savior when i sleep in class thanks

  • @Notabot2000
    @Notabot2000 6 лет назад +1

    Thank you so much

  • @maritvansommeren
    @maritvansommeren 6 лет назад +1

    you are amazing

  • @sangthai8632
    @sangthai8632 4 года назад

    thank you

  • @zuesr3277
    @zuesr3277 7 лет назад

    Sal when you will make calculus physics videos.

  • @deepgill8610
    @deepgill8610 7 лет назад +3

    Is there any way to do it logically? I'm not a big fan of "plug and chug".

    • @uttamo7
      @uttamo7 7 лет назад +3

      Deep Gill use the binomial distribution’s pmf: p(X=k) = nCk * p^k * (1-p)^(n-k). The cdf of p(X

  • @kartikaydhama3917
    @kartikaydhama3917 7 лет назад

    1st 😎😎

  • @gameking008
    @gameking008 7 лет назад +2

    The title says "T1-84" instead of "TI-84". Typo