Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Поделиться
HTML-код
  • Опубликовано: 24 авг 2024
  • 👉 PINNS in #MATLAB: • Physics-Informed Neura...
    🌎 Website: jousefmurad.com
    Physics-informed neural networks (PINNs) offer a new and versatile approach for solving scientific problems by combining deep learning with known physical laws. Such networks are able to simulate physical systems, invert for their underlying parameters and even discover underlying physical laws themselves. In this introductory workshop and live coding session we will cover the basic definition of a PINN, their pros and cons compared to traditional scientific techniques and some of the state-of-the-art research in the field.
    👉 My main channel: @Jousef Murad
    📈 APEX Consulting: theapexconsult...
    ONLINE PRESENCE
    ================
    🌍 My website - jousefmurad.com/
    💌 My weekly science newsletter - jousef.substac...
    📸 Instagram - / jousefmrd
    🐦 Twitter - / jousefm2
    #physics
    #engineering

Комментарии • 33

  • @JousefLITE
    @JousefLITE  Год назад +5

    🧠PINNS in MATLAB: ruclips.net/video/RTR_RklvAUQ/видео.html

  • @meetplace
    @meetplace 9 месяцев назад +18

    +1 for Oxford PhD saying "timesing" instead of multiplying... respect! :D

  • @abdulwaris8
    @abdulwaris8 8 месяцев назад +2

    Thanks for sharing this recording from the workshop. Thanks, Ben!

  • @carriefu458
    @carriefu458 4 месяца назад

    I love all of the questions!! 🤓 Ben is a great teacher!

  • @hreedishkakoty6771
    @hreedishkakoty6771 4 месяца назад +3

    at 14:30, it seems like external force will not operate on Unn. External force will be a constant term in the physics loss function.

    • @PaulGoyes
      @PaulGoyes 26 дней назад

      But it is multiplying by U_NN term, so the loss can be derivate with respect to thega

  • @muhammadsohaib681
    @muhammadsohaib681 Год назад +4

    Thank you for such an informative lecture on PINN.

  • @vitezslavstembera854
    @vitezslavstembera854 Год назад +2

    Very nice and clear presentation.

  • @ajaytaneja111
    @ajaytaneja111 Год назад +6

    We are talking of relatively simple oscillator problem. How about if we have complex geometries for which FEM methods are most suited today? I have been reading of physics informed graph nets for the purpose of complex geomeries. Do you have any references for complex domains? Lets say i have a complex shaped mechanical component subjected to pressure fir which i normslly use FEM.?

  • @canxkoz
    @canxkoz Год назад +2

    Great video on this fascinating field. Thanks for sharing.

  •  10 месяцев назад +1

    Nice lesson and clear presentation. Thank you!

  • @AdrienLegendre
    @AdrienLegendre 5 месяцев назад

    A possibly useful method would be to have the neural network identify the invariants or a Lie group for a differential equation. Another approach, compute all scalar quantities and have neural network find the right combination of scalar quantities to find a Lagrangian for a physical system.

  • @vegetablebake
    @vegetablebake 10 месяцев назад +1

    A great introduction and massive thanks for sharing the knowledge!

  • @raju-bitter
    @raju-bitter 10 месяцев назад +1

    Fantastic introduction, much appreciated!

  • @user-lt4zd9zj2h
    @user-lt4zd9zj2h 9 месяцев назад

    well done,the trend information is also very important,and it can be involved by a partial differential equation.i think maybe the parameters of the partial differential equation can also be the parameters of the neural network PINNS

  • @suleymanemirakin
    @suleymanemirakin 6 месяцев назад

    Great work!

  • @mklu0611
    @mklu0611 10 месяцев назад +1

    OMG, very cool video!!! The training performance is highly dependent on the "lambda" value, do you have ideas about how to define its value? Many thanks.

  • @cunningham.s_law
    @cunningham.s_law 9 месяцев назад +1

    I wonder if this give better results with PDE for option pricing

  • @rupeshvinaykya4202
    @rupeshvinaykya4202 11 месяцев назад +10

    Thanks for PINN , is code available ?

    • @aakashs1806
      @aakashs1806 4 месяца назад

      I think MIT developed something related to this, not sure whether it is opensource

  • @fkeyvan
    @fkeyvan 8 месяцев назад

    nice tutorial. thank you.

  • @jyothish75
    @jyothish75 8 месяцев назад +2

    could you please provide the example code of PINN?. Link in the comments not working.

  • @ihmejakki2731
    @ihmejakki2731 7 месяцев назад

    Very nice lesson! I'm stuck on the Task 3 though, I can't get the network to converge for w0=80. Here's the code if anyone can spot what I'm missing here:
    torch.manual_seed(123)
    # define a neural network to train
    pinn = FCN(1,1,32,3)
    # define additional a,b learnable parameters in the ansatz
    # TODO: write code here
    a = torch.nn.Parameter(torch.zeros(1, requires_grad=True))
    b = torch.nn.Parameter(torch.zeros(1, requires_grad=True))
    # define boundary points, for the boundary loss
    t_boundary = torch.tensor(0.).view(-1,1).requires_grad_(True)
    # define training points over the entire domain, for the physics loss
    t_physics = torch.linspace(0,1,60).view(-1,1).requires_grad_(True)
    # train the PINN
    d, w0 = 2, 80# note w0 is higher!
    mu, k = 2*d, w0**2
    t_test = torch.linspace(0,1,300).view(-1,1)
    u_exact = exact_solution(d, w0, t_test)
    # add a,b to the optimiser
    # TODO: write code here
    optimiser = torch.optim.Adam(list(pinn.parameters())+[a]+[b],lr=1e-3)
    for i in range(15001):
    optimiser.zero_grad()
    # compute each term of the PINN loss function above
    # using the following hyperparameters:
    lambda1, lambda2 = 1e-1, 1e-4
    # compute boundary loss
    # TODO: write code here (change to ansatz formulation)
    u = pinn(t_boundary)*torch.sin(a*t_boundary+b)
    loss1 = (torch.squeeze(u) - 1)**2
    dudt = torch.autograd.grad(u, t_boundary, torch.ones_like(u), create_graph=True)[0]
    loss2 = (torch.squeeze(dudt) - 0)**2
    # compute physics loss
    # TODO: write code here (change to ansatz formulation)
    u = pinn(t_physics)*torch.sin(a*t_physics+b)
    dudt = torch.autograd.grad(u, t_physics, torch.ones_like(u), create_graph=True)[0]
    d2udt2 = torch.autograd.grad(dudt, t_physics, torch.ones_like(dudt), create_graph=True)[0]
    loss3 = torch.mean((d2udt2 + mu*dudt + k*u)**2)
    # backpropagate joint loss, take optimiser step
    # TODO: write code here
    loss = loss1 + lambda1*loss2 + lambda2*loss3
    loss.backward()
    optimiser.step()
    # plot the result as training progresses
    if i % 5000 == 0:
    #print(u.abs().mean().item(), dudt.abs().mean().item(), d2udt2.abs().mean().item())
    u = (pinn(t_test)*torch.sin(a*t_test+b)).detach()
    plt.figure(figsize=(6,2.5))
    plt.scatter(t_physics.detach()[:,0],
    torch.zeros_like(t_physics)[:,0], s=20, lw=0, color="tab:green", alpha=0.6)
    plt.scatter(t_boundary.detach()[:,0],
    torch.zeros_like(t_boundary)[:,0], s=20, lw=0, color="tab:red", alpha=0.6)
    plt.plot(t_test[:,0], u_exact[:,0], label="Exact solution", color="tab:grey", alpha=0.6)
    plt.plot(t_test[:,0], u[:,0], label="PINN solution", color="tab:green")
    plt.title(f"Training step {i}")
    plt.legend()
    plt.show()

  • @WeiZhang-sj9sl
    @WeiZhang-sj9sl 10 месяцев назад

    great work

  • @shankyxyz
    @shankyxyz 10 месяцев назад

    similar question as some others. When we are solving even standard physics electrostatics, heat transfer etc, forget time domain, so only elliptic equations on complex CAD, I am wondering what applications can PINNs be used for. as opposed to using FEM. maybe shape optimization type problems? or inverse problems?

  • @AIDreamStudio786
    @AIDreamStudio786 2 месяца назад +1

    Where can we download the python script file

  • @tanuavi98
    @tanuavi98 6 месяцев назад +1

    code link where can I get?

  • @baseone1079
    @baseone1079 Месяц назад

    Hi Ben my Question is if I'm having an issue with audio and data strings bombardment maliciously engaging my synapse. Do you think fitting pinn's or over fitting pinn's to stabilise the nuclei would be the Answer. I've tried neural Clips and they come out/ tried Apache CNN and Hadoop to stabilise the nucleus. its been 4 years now and its very aggravating/infuriating and frustrating any help would be greatly appreciated

  • @TerragonCFD
    @TerragonCFD 11 месяцев назад +1

    Im a beginner in PyTorch and OpenFOAM since the last few years, but today i learned that my "dream" is called "PINN" 🙂

  • @sadeghmirzaei9330
    @sadeghmirzaei9330 Год назад

    Great 👍