【CloudMile 科技情報站 EP.1】AI 是什麼?淺談人工智慧| 機器學習 V.S 深度學習

Поделиться
HTML-код
  • Опубликовано: 24 дек 2024

Комментарии • 18

  • @janchangchou777
    @janchangchou777 10 месяцев назад +6

    任何一條神經網路也是一個多變數廻歸分析,也是統計學迴歸分析的一環。我在40年前攻讀數理統計就涉及這些人工智能及多變量(含時間變量)的廻歸分析(向量/ 矩陣/ 線性代數/ 機率/ 取様….)。以便對一些事件做出精准智能的預測。所謂自我學習也只是用後面收集或模擬出的更新的資料去修正原先迥歸分析的參數而已。40 年前人工智慧就是數理統計的一大課題。馬斯克說得一點都沒錯-目前的人工智慧全部建立在數理統計的基礎上。從那時開始就不斷有各行各業的數據分析專業人士來我們數理統計這參與並學習迥歸分析。他們回去後就不斷建立了屬於他們行業內的多條神經網絡(行業內的迥歸模型)。在那時從事這類研究工作的數理統計的博士生全部被限制在晚上12 時過後才能使用國家級的超級計算機,否則我們兩三𠆤人一上線全部就大當機。我們那時也發展出一套類似挖礦機的方式,利用所有大量閒置的𠆤人電腦來提供其微小的算力,進而整合這些龐大的所謂分散型算力,但受限那時網路的不發達,很難把規模擴大。
    近幾十年隨計算機能力不斷提升,目前市面AI 所謂大模型,主要是著力於面對”服務大衆需要”的所謂生成式/ 語言等等的智能協作服務。就是把百行百業各個領域等等數以千萬千億計資料進行迥歸模型的建立及修正(所謂自我深度學習)而形成龐大的神經網絡。因此也不用太誇大眼下的AI , 這些理論早在40 年以前都已建構了理論基礎,而智能恊作早在各專業領域都已發展的非常完善,只是因過去算力不足只能在各自專業領域進行中小規模(變量數較少)的神經網絡建構。例如氣象預報就是早期最明顯的利用氣象專用超高速大電腦發展為成熟預測能力(AI)的例子,股票買賣決策也是智能恊作(AI/CIC)的典型。”把簡單數學上使用即存的規模資料或電腦模擬資料進行所謂的㢠歸分析/模型建構並藉此模型做可行的智能預判或恊作,包裝成醫學上複雜尚未完全掌握的神經網路的機制及作用原理”,不但瓢竊了數理統計在AI 發展的絕對地位,實在也是在誤導整𠆤AI 的發展。也會造成眼下一般人的過度期待和焦慮。應將AI 改稱作” CIC:Computer Intelligent Collaboration , 電腦智能恊作, 更為恰當。
    另外, 眼下AI 服務非專業大衆的大模型的各種數學理論及所謂的機器學習(參數修正)及深度學習(參數及變數的多層次增加及修正)。 早在40 年前相應的數學理論都已完備(但落實到實際應用上,如何解1 億 by 1 億的聯立方程組, 這需要極其龐大的平行計算能力,在那時期是完全不可能的) 。
    其實AI 最重要最關鍵的是各行各業各領域的專家組,而不是這些AI 搞編程的公司( 他們只是依需求用已完善的數學統計理論加以電腦編程後,利用巨大算力去幫忙找出合適的模型並不斷予以完善)。
    只有各行各業各領域的專家組才知道在茫茫大海中的資料及訊息中,那些因素才是其所涉領域的関鍵變數,那些變數資料才是可做為他們收集分析建立模型的。例如氣象學/經濟學/股票買賣智能決策/ 醫學/ 藥學/ 農業生產/ 基因工程/ 化學工程/自動駕駛/飛彈防空系統/圖像識別及處理/ 建築結構力學/小樣品模擬模型(核爆/飛機失事)………..等等。
    此外服務大衆的語言學也是極度複雜的一門學課,其可能的變量變因會高達幾千萬𠆤, 再加上多層級過濾學習修正的模式,因此其涉及的變數算力就以億計, 所以才稱做大模型。 要取那些因素進行那一層分析,主要都是語言學家在主導。
    而這些眼下的AI 應用的公司, 只是利用已發展完備的數學統計理論在不同領域專家組的指導下,去有效的進行數拈收集整理分析並進而建立一個特定領域的模型,作為該特定領域的電腦智能恊作工具。
    另外面對服務大衆的生成式服務,也是要面對大衆各種不同的需求,因此其所需處理消化的資料也是天文數字的龐大,也要各行各業領域專家介入協助指導進而形成並建立大模型。
    其實生成式AI 可以理解成升級版的超級搜索引擎,傳統的搜索引擎,用関鍵字/詞,從數據庫內匹配/找出並羅列出可能所需資訊,現在進步升級到如果你給出更具體規範的需求,系統就能從數據庫內拼湊出並提供更完整的接近最終需求的服務內容。這只是把過往已存在的數據庫(已長年經各行業領域專家組維護並梳理過的)更完善的整理優化後予以呈現。而這𠆤更完善的過程使用了大量多層次的統計數字分析的手段, 把這個完善化的過程誇大的比擬成人類的思考及智慧(其誇大的目的-圈錢),將造成極大的誤導。
    其實生成式大模型, 就是用即存服務於大衆的大型搜索的資料庫,如google , Bing 等等,以數理統計為核心,結合資訊工程及硬體工程為工具,而進行更貼切於使用者需求的優化過程和結果。所以生成式大模型最終會回到過往提供搜索服務的大型公司的對決。
    因此CIC 或是AI 是以特定領域專家組為主導,數理統計為核心,資訊工程及硬體工程都是配合的工具而已。 這樣的發展才會健康/ 不浪費/ 高效率/ 高精確度。
    但目前的發展方式, 以資訊工程及硬體工程來主導開發服務大衆的大模型,只是因為這方面天文級別的龐大算力需大資本投入,這是一𠆤比較理想的快速盈利回報的營運方式,但這種情況就會造成眼下嚴重的誤導及錯誤的認知,沒有效率及喪失精準度,甚至如當下出現諸多以提供算力及編程服務的所謂AI 公司出面圈錢的亂象。
    未來可能的發展模式:
    1) 資訊及硬體工程提供集中算力設備及模型編程的開放平台,供各領域的專家組使用。
    有點像當下晶片產業,各應用領域產業由專家組組成公司後,進行各領域的智能開發和應用(如晶片應用的design house,聯發科,海思等 ) , 而算力的提供及收費則由資訊及硬體工程提供(這需要密集资本投入,甚至國家力量投入,如台積電)。
    2) 由於網路的高度發展, 另外一種提供龐大算力的方式,是由巨量萬家萬戶閒置PC 𠆤人電腦參與分散型算力的提供,並予以整合,這也是需由資訊及硬體工程來實現的。

    • @andrewtsen7839
      @andrewtsen7839 6 месяцев назад

      應該是在這領域的老前輩才能有哪麼深刻的體悟, 可惜商業上的運作往往不是哪麼理想和務實

  • @janchangchou777
    @janchangchou777 29 секунд назад

    Part 4)
    許多專業領域的AI 很早就開始做了,而且做的很好很成功。 目前台面上的AI , 是指生成式AI( 時間序列高度相關的), 這是兩碼事。
    AI 別隨著美國起舞,無論方法上及方向上,目前台面上這些以資工leading 生成式AI 的美國AI 發展已完全走偏撞大牆了。
    目前以資工leading 生成式AI , 這群碼農也太批蛋了。
    1) 利用40年前已完善的數理統計( 㢠歸分析及時間序列高度相關變數的自迥歸分析。 ) 2) 包裝𠆤高大上的類人類神經網路的偷盜慨念。3) 藉由半導體科技的算力。
    完全沒有任何創新的欺世盜名妥妥的碼農( 程序員)居然能拿諾貝尔物理奬。
    物理學家/ 數學家您們睡著了嗎?!居然能容忍這等離譜偷盜者的獲奬。
    另外我以前一些同學,現仍在美國Google 參與相關大模型工作,拈他們告知我的小道未經證實的消息。
    1) Google 在這方面付了大筆的學費。
    2) Google 養了全世界各產業領域的頂流專家, 特別是語言學家,參與相關建模。
    3) OPen AI 及近期獲諾奬的加拿大教授, 這師徒們,從Google 弄走了不少錢。 最後Google 看穿了,不得不將Open AI 這些人從Google 割出去。
    而李非非近期也搞𠆤digital cousin 數字表親, 根本就是小樣品摸擬實驗:
    這也不是什麼新方法和新手段。 在數理統計中40 年前早就有的手段。
    這些碼農一而再再而三的把數理統計的成熟手段,拿來搞什麼AI 新技術。並給𠆤新名詞進而宣稱是創新,太扯蛋了!
    我在40 年前的博士論文就是在
    針對小様品試驗進行電腦模擬試驗。如核爆/ 飛機失事等等,在現實情況下很多領域只能取得非常有限的小様品數據,因此針對這些小樣品試驗我們就會引入模擬試驗的手段和方法, 並進而利用這些電腦模擬數據,最終做出穩定可靠的預測模型。
    nature 有關AI 近期訊息:
    ruclips.net/video/kp6eiyRBFlM/видео.htmlsi=2sKWhTVx3qecNvJ4
    這𠆤問題很容易理解。
    當我們的需求是專業有限變數的問題, 如股票決策/ 海洋及気象動力/ 無人架駛/ 化學工程/ 土木工程/ 等等,許多專業的有限變數, 這些已建立完成很長一段時間模型的精準度非常高。
    而大語言模型想要用海量變數去涵蓋這些專業模式,其自然的結果就是錯誤率極高。
    也就是說針對專業有限變數模型,那些大語言模型的99% 變數不旦是垃圾, 還是有毒害的垃圾。
    因此使用AI 一定要知道什麼問題什麼場景使用什麼模型。
    ruclips.net/video/vG013hWAZwc/видео.htmlsi=NDA12ZYY4hCIg_C5
    ruclips.net/video/XffDExSYIOA/видео.htmlsi=4OZ7WUrlQRCcw-KP
    AI 發展的3 大組成; 各產業領域的專家,建模數理理論,算力編程的提供及組織。
    這就是我早就預見
    如果由算力或資訊工程來主導AI ,外行領導內行,將會走的很偏很快撞牆
    再看看這一報導,今天的結果,在我今年(2024 )初的part 1) 2) 3) , 先前的論述中都精準的表達過。
    ruclips.net/video/ojndlMzGZZk/видео.htmlsi=wuEqsPUOzxuPrcRR
    目前(2024-10 月)生成式大模型 AI 的發展基本撞牆了。 由 資工主導的必然性- 泡沫化, 已確定了。 因為以上三份報告都是非常權威的。
    再看看這份報告:弄出人命了!
    陪聊AI 沒有心理咨詢醫生做專業恊助/ 溝通/ 警示/ 防範等等, 由碼農直接單幹,太多的心理專業知識手段應對都沒有投入,是造成這事件背後的主因!
    ruclips.net/video/yNZsC7zvTgw/видео.htmlsi=_RK7ZM6Xaa_oQn7E
    這就是我在個人相關分享中 part 3) 談及的;
    AI的健康發展是以各領域專業專家組為主導,數理統計為核心,編程及算力只是工具,否則用提供算力及工具的這些人來leading AI 發展,會形成外行領導内行,並為AI 發展種下低效偏差甚至高風險的發展。
    譬如新藥開發/氣象預報/各種不同語言等等都是以領域專家為核心,否則就亂套了。
    更可行的作法, 各國加緊立法,用國家特准许可的方式,來認證並核准各領域不同應用AI 的開發許可及成效認證,譬如目前自動駕駛這領域,不能僅憑廠家自行認證,必需由國家相關單位認證,納入國家法規制約。其實其他領域也應該如此,即便服務大眾的生成式大模型也要納入規範管理,絕對不能任由AI 公司自行任意發佈,一個小電器產品都需有関認證,才能上市銷售,目前AI 大模型實在是太無序了,AI 公司任意上市推出由市場決定其優劣,客戶當白老鼠,完全沒有任何管理約束機制。
    任何AI 應用開發的公司,必須有相關該應用領域專業專家為主導,及數理統計的人員的參與,如果沒有通過這些人員資質審核要求的公司或團隊,一律不得從事AI 開發及應用工作。否則視為違法。如同醫師證照,沒證照的醫師坐診,診所如何能執業?!
    建立政府職能的審核監管制度,才能防止並追蹤AI 的錯誤使用/ 違規使用/違法使用, 也進而能排除人們對AI 發展造成危害人類的擔憂。
    再看看下面報導:
    ruclips.net/video/TRxYKidqY8E/видео.htmlsi=ukFmC8XGPa17d6It
    ruclips.net/video/mXlaAto1qx0/видео.htmlsi=B_gy3Uq8JXOM2NF8
    ruclips.net/video/uPZ-eyDyo4A/видео.htmlsi=AL1EkqW7uM1EhpQh
    AGI 基本就是建立一套從千萬上億 由領域產業專家建立的專業小模型進行徵用的智能機制(藉由針對使用者一些基本需求的梳理,形成分門別類確立問題的機制)不能一昧的用大模式(發散式包攬所有)。
    其實人類的思維也是如此,先確定問題是屬於那𠆤範籌,再從我們的大腦內調出已確認範籌的相關知識及經驗進而進行各種響應。
    生成式大模型,只適用於sequences 高度相關的時間序列資料分析。 如語言文字前後字文分析,圖像點分析或是語音樂律分析等等。不可盲目外延。

  • @greenbean681
    @greenbean681 3 года назад +6

    AI知識一本通,是市場上相對簡單淺顯的入門介紹,是可以進一步閱讀的參考書目

  • @legendyang1837
    @legendyang1837 Месяц назад

    请问关于将人类说出来的语言命令转换成机器人具体可执行的机器指令有哪些模型可以推荐试用的?

  • @AI-uc6kf
    @AI-uc6kf Год назад

    謝謝,又學習到了

  • @AlanLin-q5s
    @AlanLin-q5s Год назад

    分享的很好

  • @SaySaySee
    @SaySaySee 3 года назад +2

    常聽到這些名詞,但又不知道是幹嘛的.看完有點概念了. #人工智慧 #機器學習 #深度學習
    5:25 總結 deep learning part of 機器學習. 而AI一定有機器學習
    1:35機器學習 3:18 3:40 深度學習 4:18 need大量資料 & need強大硬體做運算

  • @HwamingChen
    @HwamingChen Год назад

    Good Thanks ❤❤😊

  • @HwamingChen
    @HwamingChen Год назад

    Good Thanks ❤

  • @vivianlo186
    @vivianlo186 Год назад

    最近聽了一個演講關於Green Learning(GL),好其他與影片中所說的方法有哪些關聯性,與不同點

  • @paultw1495
    @paultw1495 2 года назад

    講的真棒

  • @IssacBerry-nd8pt
    @IssacBerry-nd8pt 6 месяцев назад

    我想上

  • @Suniet-dx1sd
    @Suniet-dx1sd Год назад

    完全沒有解釋到

  • @egypt0916
    @egypt0916 5 месяцев назад

    到底machine 唸成「馬遜」是誰教你的?

  • @jackylui1432
    @jackylui1432 Год назад

    👎👎👎👎👎👎👎