Evaluating A Nice Radical

Поделиться
HTML-код
  • Опубликовано: 12 ноя 2024

Комментарии • 11

  • @stvp68
    @stvp68 Месяц назад

    Tutti in music: everyone sing!

  • @trojanleo123
    @trojanleo123 Месяц назад

    Answer = 1
    I used substitution because substitution is awesome!

  • @MrGeorge1896
    @MrGeorge1896 Месяц назад

    Looking at t³ - 5t - 2 = 0 we see t = -2 is a solution so we can write it as (t + 2) (t² - 2t - 1) = 0. But t needs to be non-negative for x to be real so there is only one solution for t: √x = t = 1 + √2 and x = t² = 3 + 2√2 and finally x - 2√x = 3 + 2√2 - 2 - 2√2 = 1.

  • @dorkmania
    @dorkmania Месяц назад

    Sorry, I don't get why √x ≠ -2. If x is negative then √x will be a complex number, but the converse isn't necessarily true. for √x = -2, x = 4. Shouldn't (√x)² - 2√x = (-2)² - 2(-2) = 8, also be a valid solution?

    • @MrGeorge1896
      @MrGeorge1896 Месяц назад

      The square root of a positive number is positive by definition so it can't be -2.

  • @Quest3669
    @Quest3669 Месяц назад

    4-(-1)= 5

  • @FrancisZerbib
    @FrancisZerbib Месяц назад +1

    We’re not everyone. We’re someone

  • @dan-florinchereches4892
    @dan-florinchereches4892 Месяц назад

    I will try the following :
    y=√x and E = x-2√x = y^2-2y => y^2-2/y=5 y^3-2y^2+2y^2-5y-2=0
    y*E+2y^2-4y+4y-5y-2=0
    y*E+2E -y -2=0
    y(E-1)+2(E-1)=0
    (y+2)(E-1)=0
    so E must be 1

  • @yakupbuyankara5903
    @yakupbuyankara5903 Месяц назад

    1

  • @loboshill4573
    @loboshill4573 Месяц назад

    X= ?