A Non-Standard Radical Equation

Поделиться
HTML-код
  • Опубликовано: 11 янв 2025

Комментарии • 110

  • @raystinger6261
    @raystinger6261 3 года назад +7

    I just used x=u³ in the expression and got:
    4root(u³ + 15) = u + 1
    Then elevated both sides to the 4th power:
    u³ + 15 = u^4 + 4u³ + 6u² + 4u + 1
    => u^4 + 3u³ + 6u² + 4u - 14 = 0
    => (u - 1)(u³ + 4u² + 10u + 14) = 0
    And it was at that point I thought I was doing everything the hard way, because that 3rd degree polynomial didn't have "nice" roots, so I gave up and started watching the video - that's when I discovered this problem isn't "nice" at all. ¯\_(ツ)_/¯

  • @snejpu2508
    @snejpu2508 3 года назад +12

    Wow, nice similar. I had quite similar, but I didn't know how to find a solution of the cubic equation, so I proved there is only one solution using a derivative, then I estimated it to be between -3 and -2 and then I used Newton's method. I'm not accustomed to engaging a formula for the root of a cubic equation.

    • @raystinger6261
      @raystinger6261 3 года назад +1

      Don't worry man, no one is used to that cubic formula, it's really horrible.

  • @pk2712
    @pk2712 2 года назад +2

    The second value of b leads to an extraneous solution . The value of x that it yield leads to a positive value on the left hand side of the original equation and a negative value on the right hand side of the original equation . This extraneous solution happens because in part of your solution you raise (b+1) to the fourth power .

    • @iconjack
      @iconjack 2 года назад

      What @pk2712 is saying is that this video is completely wrong.

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 года назад +2

    6:55 Here's an easy way to handle the cubic term , just substitute b = a - 1 in the cubic polynomial , you will get ( a^3 + a^2 + 5a + 4 ) . Now , since *a* is a 4th root , hence a >= 0 which means a^3 + a^2 + 5a + 4 >= 0 + 0 + 0 + 4 = 4 > 0 , therefore the cubic term never equal to 0 hence the only solution is x = 1 :)

    • @srijanbhowmick9570
      @srijanbhowmick9570 3 года назад +1

      Note :--- I think your second solution in the video is incorrect because to satisfy the domain in sqrt(sqrt(x+15)) , x >= - 15 . But your second solution is less than - 15 .

    • @SyberMath
      @SyberMath  3 года назад

      Uh oh! 😂

  • @GirishManjunathMusic
    @GirishManjunathMusic 2 года назад

    ⁴√(x + 15) = ³√x + 1
    Substitute x = u³:
    ⁴√(u³ + 15) = u + 1
    Raise to 4th power:
    u³ + 15 = u⁴ + 4u³ + 6u² + 4u + 1
    Move all terms to LHS and negate:
    u⁴ + 3u³ + 6u² + 4u - 14 = 0.
    As the sum of the coefficients is zero, u - 1 is a factor.
    Dividing through,
    (u - 1)|(u⁴ + 3u³ + 6u² + 4u - 14) = (u³ - 4u² + 10u - 14)
    (u - 1)(u³ - 4u² + 10u - 14) = 0
    u = 1 or u³ - 4u² + 10u - 14 = 0.
    However, this cubic has no nice factorisation, so we'll have to use the cubic formula or substitution to solve it. Wolfram Alpha suggests substituting 'u = v + 4/3'. I'm not going to solve it through here, but there's only one real solution to the cubic with a really messy exact form. So lets take u = 1. Now, x = u³ so:
    x = 1.

  • @242math
    @242math 3 года назад +8

    this one was complex, great job bro, watching a master

  • @PatKinson
    @PatKinson Год назад

    X is also equal to approx -12.167 ... the other value (-12.167)^1/3 = -2.3 + 1= -1.3 = absolute value = 1.3, calculation was for the right side proof.
    now let us proof check the left side: (-12.167 + 15)^1/4 = (2.833)^1/4 = approx. 1.297... absolute(1.3) approx. 1.297
    -2.3 plugs into the cubic equation converges close to zero... u^3+4u^2+10u +14=0.... (-2.3)^3 = -12.167

  • @adamsulc3343
    @adamsulc3343 3 года назад +5

    If you graph both functions, they intersect only once. Therefore I think, there is only one real solution.

    • @jfcrow1
      @jfcrow1 3 года назад +3

      agree the other solution does not work

    • @SyberMath
      @SyberMath  3 года назад +1

      That's right!

    • @ivandebiasi6657
      @ivandebiasi6657 3 года назад

      There is another solunzion that is near 8.2749 according to Geogebra... but it isn't the one you found

    • @adamsulc3343
      @adamsulc3343 3 года назад +1

      @@ivandebiasi6657 That's impossible. We can easily prove, that there are no other solutions. Only solution is x = 1. We can take a limit (x approaching infinity) [(x+15)^1/4]/[(x)^1/3 + 1]. If this limit will be greater than one, it will mean, that the top function is eventualy bigger (in infinity). And this limit is equal to infinity, which is obviously bigger than one, so that means, there is no other intersection point.

    • @moeberry8226
      @moeberry8226 3 года назад

      The other solution was extraneous and was brought by the substitution and raising it to the fourth power. Hence x=1 is the only real solution.

  • @AcousticBruce
    @AcousticBruce 3 года назад +1

    How can I learn about the second solution? I was completely lost on how that was created. Anyone have any links?

    • @SyberMath
      @SyberMath  3 года назад +1

      Second solution does not satisfy the original equation

  • @ВасильМигович-ш5п
    @ВасильМигович-ш5п 3 года назад

    b^3+4b^2+10b+14=(2b+5/2)^2+31/4+b^3 > 0+31/4-1=27/4>0, therefore only x = 1

  • @Артьомдругартем
    @Артьомдругартем 3 года назад +5

    Левая часть неотрицательна.
    Значит и правая часть тоже.
    squb x+1>=0. x>=-1.
    Только один корень x=1

  • @SyberMath
    @SyberMath  3 года назад +4

    Fourth 😁

    • @MathElite
      @MathElite 3 года назад

      Nice one....wait you uploaded the video so you were first the entire time ?!!

    • @SyberMath
      @SyberMath  3 года назад

      Thanks. I did upload it but was the fourth person to come to the premiere I guess

  • @johanrichter2695
    @johanrichter2695 3 года назад +5

    The complicated solution must be a false root. a must be non-negative but b+1 would be negative.

  • @leecherlarry
    @leecherlarry 3 года назад +3

    your 2nd solution *x=-12.1521* (approx. value) results in *1.29906* for the left-hand side of your problem statement (positive!) and *-1.29906* for the right-hand side (negative!).
    in addition, wolframalpha shows 1 solution only, enter
    on the website.
    I am confident that there is only 1 solution, namely x=1:
    *𝚁𝚎𝚍𝚞𝚌𝚎[𝚂𝚞𝚛𝚍[𝟷𝟻 + 𝚡, 𝟺] == 𝚂𝚞𝚛𝚍[𝚡, 𝟹] + 𝟷, 𝚡]*

  • @hawkeyexenotics5188
    @hawkeyexenotics5188 2 года назад

    Cardano´s solution formula is so complicated, so very few students challenging for entrance exams can
    figured out non-integer solutions.

    • @SyberMath
      @SyberMath  2 года назад

      Right! It's not too bad, though

  • @tomasstride9590
    @tomasstride9590 3 года назад +2

    I think may be the second solution does not actuallly satify the equation.It satifies the negative fourth root rather than the positive. But I could be wrong.

    • @SyberMath
      @SyberMath  3 года назад

      You're right!

    • @tomasstride9590
      @tomasstride9590 3 года назад

      @@SyberMath I don't see this as a mistake but more a matter of convention, which to be honest I am not all that sure about. I think the idea is that these root symbols are intended to be the principle branch but I am not sure about this. There are situations when you most definitely don't want to do this. I learn a lot from your videos and find they have improved me mathematically.

    • @SyberMath
      @SyberMath  3 года назад

      Glad to hear!

  • @RashmiRay-c1y
    @RashmiRay-c1y 5 месяцев назад

    The only real solution of b^3+4b^2+10b+14=0 is b=-2.29906. Thus b+1 is negative whilst (15+b^3)^1/4 is positive. Therefore this value of b does not satisfy the original equation. The only solution (real) is b=1 > x=1.

  • @some_weeb730
    @some_weeb730 3 года назад +1

    I really love your videos man :)

    • @SyberMath
      @SyberMath  3 года назад +1

      Glad you like them!

  • @carloshuertas4734
    @carloshuertas4734 3 года назад +2

    I got one of the solutions. Another great explanation, SyberMath!

    • @fracaralho
      @fracaralho 3 года назад +2

      Yeah, me too. I couldn't for the life of me find the x = 1 solution.

    • @SyberMath
      @SyberMath  3 года назад +1

      😁

  • @JojoDrs_
    @JojoDrs_ 3 года назад

    Me: looks to complicated, so I just plug in 1 and look if it's right
    Also me: lol

  • @chessdev5320
    @chessdev5320 3 года назад +1

    I only found x=1 as a solution and I think I did it right(its good not to find the other solution since its ugly and perhaps don't satisfy the equation)

  • @mathocean4516
    @mathocean4516 3 года назад

    Could you please show us in detail how to get second solution of b?

  • @GlorifiedTruth
    @GlorifiedTruth 3 года назад

    That second solution makes the baby Jesus cry.

    • @fabiog627
      @fabiog627 3 года назад

      Great video. I actually checked and the second solution is not valid.

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад +2

    As always amazing problem 😍

    • @SyberMath
      @SyberMath  3 года назад +1

      Thank you so much 😀

  • @manojsurya1005
    @manojsurya1005 3 года назад +1

    Woah!one of the solution is very radical

    • @SyberMath
      @SyberMath  3 года назад +2

      Radical and complex! 😁

  • @namunamu3424
    @namunamu3424 2 года назад

    please I want to know the general form of the cubic equation

  • @jofx4051
    @jofx4051 3 года назад

    7:29 When he wrote another b solution, people probably lost at it

  • @lennybruce1137
    @lennybruce1137 3 года назад

    Whats the point if "wolfram alpha" can do it all for you?

  • @peterromero284
    @peterromero284 3 года назад +1

    Wow! One nice solution and one horrifying one.

    • @SyberMath
      @SyberMath  3 года назад +2

      Actually, the radical solution does not satisfy the equation! 😁

    • @peterromero284
      @peterromero284 3 года назад +2

      @@SyberMath Actually, I was just noticing that, looking at the graphs!

  • @sunrise0310
    @sunrise0310 3 года назад +2

    Hmm there's a very simple way I mean very simple standard way and I am gonna make video on it 😁😁

  • @ramaprasadghosh717
    @ramaprasadghosh717 3 года назад

    x= 1 has a trivial solution to this equation .

  • @MathElite
    @MathElite 3 года назад +5

    Second

  • @cdiesch7000
    @cdiesch7000 3 года назад

    only x=1 is a solution as the other is negative which is incompatible with the sqrt(x) in the initial equation

  • @ray2428
    @ray2428 3 года назад

    could not get this one, very complicated solution

  • @primmanet
    @primmanet 3 года назад

    make: [(x)^1/3] +1 = z ----> x=1

  • @crazy4hitman755
    @crazy4hitman755 3 года назад

    The second answer was so beautiful

  • @aashsyed1277
    @aashsyed1277 3 года назад +3

    Damn you're so good.....

  • @aahaanchawla5393
    @aahaanchawla5393 3 года назад +2

    Couldn't catch the premiere unfortunately

  • @PatKinson
    @PatKinson Год назад

    Great style, always make it sound easy, it suppose to be easy😊 easy wurks...

  • @robertcotton8481
    @robertcotton8481 3 года назад +1

    WTH wolframalpha !!!!!!

    • @tannerstrickler7352
      @tannerstrickler7352 3 года назад +1

      Came here to say this. If WolframAlpha was an option the whole time, why not use it on the initial equation? 😂

    • @Noname-67
      @Noname-67 3 года назад

      @@tannerstrickler7352 what can we do otherwise? Cubic formula?

    • @tannerstrickler7352
      @tannerstrickler7352 3 года назад

      @@Noname-67 The cubic formula would be the only way that I know of to solve it by hand, but it's pretty nasty.

  • @mariomestre7490
    @mariomestre7490 3 года назад +1

    Pero amb Geogebra les dues funcions només tenen un punt de tall.

    • @SyberMath
      @SyberMath  3 года назад

      That's right! I made a mistake

  • @rebellious5428
    @rebellious5428 3 года назад

    The second time i solve it by the eyes

  • @aashsyed1277
    @aashsyed1277 3 года назад

    so good

  • @bahloulrayan6858
    @bahloulrayan6858 3 года назад

    There is a mistake ...there is one solution which is 1 ...the other one is impossible because x €(-1,+infini (

  • @javaman1300
    @javaman1300 3 года назад

    I like kind of this equation

  • @mariomestre7490
    @mariomestre7490 3 года назад

    Per el mètode de Regula Falsi la segona solució és -2,299062577

  • @ephraim-duncan
    @ephraim-duncan 3 года назад

    😳...just amazing

  • @jfcrow1
    @jfcrow1 3 года назад

    only one real solution

  • @aashsyed1277
    @aashsyed1277 3 года назад +1

    I like you

  • @hamidrezax34
    @hamidrezax34 3 года назад

    i dont understand solve degree 3

  • @resilientcerebrum
    @resilientcerebrum 3 года назад

    Please simplify the other solution sybermath 😂😂😂😂

  • @vivekbhutada3049
    @vivekbhutada3049 3 года назад

    The other solution was so irritating

  • @Mathcambo
    @Mathcambo 3 года назад

    You know

  • @MathZoneKH
    @MathZoneKH 3 года назад

    Wow that’s interested sir

  • @mariomestre7490
    @mariomestre7490 3 года назад

    b=-2,299062577

  • @akshatjangra4167
    @akshatjangra4167 3 года назад +4

    First

  • @aayanansari700
    @aayanansari700 3 года назад +1

    8th😂

  • @snejpu2508
    @snejpu2508 3 года назад

    379th. : )

  • @ozcanozdemir6956
    @ozcanozdemir6956 3 года назад

    Bu soru çok saçma bı soru böyle çözüm olamaz.

  • @-UMT-VIGNESHKRISHNAS
    @-UMT-VIGNESHKRISHNAS 3 года назад

    Fifth

  • @hotlatte1222
    @hotlatte1222 3 года назад +1

    Third