Solving a Golden Radical Equation

Поделиться
HTML-код
  • Опубликовано: 11 янв 2025

Комментарии • 163

  • @IlanAmity
    @IlanAmity 3 года назад +11

    You can continue with the polynomial equation x^4-4x^2-x+2=0 by dividing it (long division) with (x+1)(x-2)=x^2-x-2 and get x^2+x-1=0 which yields the two other solutions x=(-1±√5)/2 of which only the positive root (φ) is the right one.

    • @SyberMath
      @SyberMath  3 года назад +2

      Nice!

    • @italixgaming915
      @italixgaming915 3 года назад +1

      You still need to check if your candidate is a solution. Here is my method, that uses your idea:
      First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive.
      The function is continuous, and since f(0)>0 and f(2)

  • @shrovitz969
    @shrovitz969 3 года назад +2

    You can easily solve the quartic equation here, just factorise it as following
    x^4-4x^2-x^2+2=0
    write it as
    (x^4-x^2)+(-3x^2-x+2)=0
    It will be factorised as
    x^2(x^2-1)+(2-3x)(x+1)=0
    After further factorisation, it will become
    (x+1)(x^2(x-1)+2-3x)=0
    (x+1)(x^3-x^2-3x+2)=0
    We get our first solution, which is -1 but the problem is that it doesn’t satisfy the equation, so it’s wrong. What it means is that (x^3-x^2-3x+2) is equal to 0.
    Now, factorise this polynomial, it will factorise as following
    x^3-2x^2+(x^2-3x+2)=0
    Factorise the quadratic side
    x^2(x-2)+(x-1)(x-2)=0
    (x-2)(x^2+x-1)=0
    2 doesn’t satisfy the equation as well, so it’s not 2?
    (x^2+x-1) should be equal to 0.
    Now we all know this famous quadratic, the solution comes out to be the golden ratio.

  • @RexxSchneider
    @RexxSchneider 2 года назад

    Without wishing to be rude, at 2:20 you have the equation x^4 - 4x^2 - x + 2 and suggest that solving it is long-winded, but you then spend more than 10 minutes using a substitution to solve it.
    Yet the rational root theorem suggests trying ±1 and ±2, and that quickly shows x = -1 and x = 2 are roots of the quartic. Polynomial division by (x+1)(x-2) gives x^2 + x - 1 = 0 and the solutions of that are (-1 ±√5)/2 which are -ϕ and 1/ϕ, where ϕ = (√5+1)/2, the golden ratio.
    Since √(something) = x we know that x is not negative, so we immediately discard x = -1 and x = -ϕ. We check that x = 2 is not a solution, then find that x = 1/ϕ is a solution.

  • @gianmarcolettieri6150
    @gianmarcolettieri6150 3 года назад +9

    Great video. I just want to point out that you could just have devided by u+x. That's because u=sqrt(x+2), so u=>0 and 0

    • @SyberMath
      @SyberMath  3 года назад +3

      Good point!

    • @gemeni0
      @gemeni0 2 года назад

      Положительные то они положительные ежели не комплексные. 😅

  • @notananimenerd1333
    @notananimenerd1333 3 года назад +6

    I used your previous factorizing method as
    (x²+ax-1)(x²+bx-2) and ended with all the 4 solutions though 1 is correct in the set of real numbers

    • @Skank_and_Gutterboy
      @Skank_and_Gutterboy 3 года назад

      That's the way I went with it, too. The roots I got are: -1, 2, (√5-1)/2, and (-√5-1)/2. When checking these values against the original equation, only x=(√5-1)/2 is a good solution.

    • @shmuelzehavi4940
      @shmuelzehavi4940 2 года назад

      How did you a priori know it should be: (x^2+ax-1)(x^2+bx-2) and not (x^2+ax+1)(x^2+bx+2) ?

    • @RexxSchneider
      @RexxSchneider 2 года назад +1

      @@Skank_and_Gutterboy We expect if we solve the quartic to get roots of the equations ±√(2 ± √(x + 2)) = x, so the other roots are the solutions of
      -√(2 - √(x + 2)) = x for x = -1
      +√(2 + √(x + 2)) = x for x = 2
      -√(2 + √(x + 2)) = x for x = (-√5-1)/2

  • @theOman333
    @theOman333 3 года назад +12

    And cool vid! I'm surprised your channel has the amount of views it has... I expect it to grow, this is quality content!

  • @itsgoodtoplaygames3830
    @itsgoodtoplaygames3830 3 года назад +1

    Great video but -1 is actually a solution as the square root of a number can be either positive or negative resulting in √1=1 or -1 which is the initial value of x.

    • @SyberMath
      @SyberMath  3 года назад

      Not in the real world!

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 года назад +2

    (sqrt(5)-1)/2 = 1 - phi = 1/phi :) Nice video. I tried the sub u = 2 -x which kind of works, but your solution is way cleaner.

  • @vivekkirubakaran6193
    @vivekkirubakaran6193 3 года назад

    At 4:08, why X should be greater than 0 because it is square root of something?
    X can be both positive and negative, right? For example X = Square root of 4 means X can be +/-2 (plus or minus 2)

    • @SyberMath
      @SyberMath  3 года назад +1

      Square root of a real number needs to be non-negative

    • @vivekkirubakaran6193
      @vivekkirubakaran6193 3 года назад

      @@SyberMath Square root of the real number 4 is +/-2. This essentially means square root of a real number can be negative.

    • @MrGoofy42
      @MrGoofy42 3 года назад

      @@vivekkirubakaran6193 The sqare root of 4 is 2 (it is just defined as a positive number). The solution of x²=4 is +/-2.

    • @vivekkirubakaran6193
      @vivekkirubakaran6193 3 года назад

      @@MrGoofy42 isn't X-Square = 4 same as X = Squareroot of 4?

    • @kailashanand5086
      @kailashanand5086 3 года назад

      @@MrGoofy42 exactly

  • @guadalajara4848
    @guadalajara4848 3 года назад

    After two minutes, you can solve the equation obviously by factorising : X^4 - 4X^2 - X + 2
    = X^2 (X^2 - 4) - (X - 2) = X^2 (X - 2) (X + 2) - (X - 2)
    = (X - 2) ( X^2 (X+ 2) - 1) = (X-2) (X^3 + 2 X^2 - 1)
    and you easily see that the second polynomial is equal to zero when X = -1
    so it is divisible by (X+1)
    etc.

  • @koennako2195
    @koennako2195 2 года назад

    We can use a formual here. For a infinitely nesting radical that goes (where a is a constant) sqrt(a-sqrt(a+x))=x. Like in blackpenredpens video about tejas' challenge problem, we can rewrite this as sqrt(a-sqrt(a+sqrt(a-sqrt(a+x)))). We can actually keep going forever and ever, so "dot dot dot". How does this have any relevance to this problem. Well, we can just move the 2 in front of the x in the last radical. Then we can see that the pattern is the same that I have described where the signs of the square root change from -, +, -, +, -,+, -, + and dot dot dot. Next, the formula. The formula is (sqrt(4a-3)-1)/2. If we plug in 2 for the variable a, then we get (sqrt(4(2)-3)-1)/2 = (sqrt(5)-1)/2 There are some math videos youtube that describe how to derive this formula. Yes, it is an obscure formula but, if you are trying to learn how to solve problems like these or just challenge problems in general, then you can memorize this formula for an instant answer.

  • @italixgaming915
    @italixgaming915 3 года назад

    My solution (of course way faster - plus the fact that yours is not complete since you don't prove that there is a solution so you need to test your candidate):
    First of all we see that the function f: x---->sqrt(2-sqrt(2+x))-x is defined for x between -2 and 2. We already know, looking at the equation, that the solution must be positive.
    The function is continuous, and since f(0)>0 and f(2)

  • @ibrahimsoubki7587
    @ibrahimsoubki7587 3 года назад +1

    Hi, I'm a math teacher and has just discovered your channel. I enjoyed this video and I'm looking forward to see the others. + 1 subscriber 😉

    • @SyberMath
      @SyberMath  3 года назад

      Thank you, professor! 💖😊

  • @alainfontenla7905
    @alainfontenla7905 3 года назад

    Apply your method to sqr(2-sqr(x-2))=x. Never start calculating without checking for which x what you are writing exists.

  • @paultoutounji3582
    @paultoutounji3582 3 года назад

    As always I loved the video !

  • @michaelpurtell4741
    @michaelpurtell4741 3 года назад +1

    I did it the hard way by solving for U which does give the golden ratio as a solution and then converting that back to X

  • @mateuszjarek8587
    @mateuszjarek8587 3 года назад

    After finding the quadratic, we can Just check whether divisors of 2 are sols. We easily find them and then use Horner's schema

  • @piyushdaga357
    @piyushdaga357 3 года назад +2

    (√5/2 ) -(1/2) is the only solution
    -1, 2,(-√5/2 - 1/2) are the extraneous solutions

    • @ashishpradhan9606
      @ashishpradhan9606 3 года назад

      Yup I got also one solution. It's (√5-1)/2.
      But why have you mentioned about -1 and 2

    • @piyushdaga357
      @piyushdaga357 3 года назад +1

      @@ashishpradhan9606 Yup I think so you have tried different method
      I went through simple approach. I went on squaring this equation until I get a Polynomial of degree 4 . Then I applied factor theorem to factorise the polynomial. From there I got 4 roots of that conic equation. I plugged those roots back in my original equation but only one root actually satisfied the given equation
      So the rest roots were extraneous solutions

    • @ashishpradhan9606
      @ashishpradhan9606 3 года назад

      @@piyushdaga357 Mine approach is also exactly like yours but I avoided the extrenous solutions by restricting the domain of x with inequality. 😁😁😁

    • @leif1075
      @leif1075 3 года назад

      No negative 1 is also valid.plug it in amd it works out..

    • @Qermaq
      @Qermaq 3 года назад

      @@leif1075 Think about it this way. To get that to work, we must assume the inside radical yields the positive root and the outside a negative. There is ambiguity there. I'd agree that -1 is a valid value we can assign, but I disagree that it's a proper solution. Only 1/phi truly works without ambiguity.

  • @rajeshbuya
    @rajeshbuya 3 года назад

    Why is x=2 rejected? In that case, u=√(x+2) could equal +2 or -2, if latter, then √(2-u) would in fact really equate to x=-2, again.

  • @volodymyr.kushnir
    @volodymyr.kushnir 3 года назад

    Did you tried put that answer into input equation ? For me only -1 works, am i doing something wrong ?
    I used assumptions:
    1) x +2 >= 0 thus x >= -2
    2) 2 - sqrt (x+2) >= 0 thus 2 >= sqrt(x+2) thus 4 >= x+2 thus 2 >= x
    So finally X should be in range [-2; 2). So i got 4 answers 2, -1 and same ones as you did. But only -1 works if i put it into original equation.

    • @RexxSchneider
      @RexxSchneider 2 года назад

      There is a convention (not universally honoured) that the square root sign designates the positive root only. So +√(2 - √(x + 2)) = +√(2 - √(-1 + 2)) for x = -1.
      That becomes +√(2 - √1) = +√(2 - 1) = +√1 = +1 which is not equal to x when x = -1, so x = -1 is _not_ a solution.
      The four values you found are the four solutions of ±√(2 ± √(x + 2)) = x as we might expect. But only x = (√5-1)/2 is a solution to the equation in the video.

  • @souleymanesylla2548
    @souleymanesylla2548 3 года назад +3

    Nice thinking

  • @robertodiasfb
    @robertodiasfb 3 года назад +1

    Sooooo niiice! Thks

    • @SyberMath
      @SyberMath  3 года назад

      No problem! Glad you like it!

  • @ZAHIDHUSSAINBAIG
    @ZAHIDHUSSAINBAIG 3 года назад

    As I have calculated that X=-1 is also a solution of this problem because it is satisfying the given equition.

    • @SyberMath
      @SyberMath  3 года назад +2

      -1 cannot be the square root because x is real

  • @PrimitiveSkillOfHmong
    @PrimitiveSkillOfHmong 3 года назад +2

    Good job

  • @MathZoneKH
    @MathZoneKH 3 года назад +1

    That’s a good solution sir!

  • @Артьомдругартем
    @Артьомдругартем 3 года назад +1

    Можно сделать подстановку
    x=2cos y
    2+2cos y=4cos^2(y/2)
    2-2cos(y/2)=4 sin^2(y/4)
    2sin(y/4)=2 cos y
    cos(π/2-y/4)= cos y
    5/4y=π/2. y=2/5π

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 2 года назад

    X is the inverse of the golden ratio, as well as the golden ratio minus 1.

  • @roman_roman_roman
    @roman_roman_roman 3 года назад +1

    I am from Siberia, so, SyberMath is good for me :)

  • @alainfontenla7905
    @alainfontenla7905 3 года назад

    Theoretically you are supposed to determine first for which set of x this function exists. You might have a surprise.

  • @Alians0108
    @Alians0108 3 года назад

    My method is pretty generic:
    √(2-√(x+2)) = x (2 > x > 0 is implied)
    x^2 = 2-√(x+2)
    x^2-2 = √(x+2)
    x^4-4x^2+4 = x+2
    x^4-4x^2-x+2 = 0
    x^2(x^2-4) - (x+2) = 0
    x^2(x+2)(x-2) - (x+2) =0
    (x-2)(x^3+2x^2-1) = (x-2)(x^3+x^2+x^2-1) = (x-2)(x+1)(x^2+x-1) = 0
    (x-2)(x+1) are false factors and x^2+x-1 has one negative root. Only valid root is x = (√5-1)/2

  • @kalyanbasak6494
    @kalyanbasak6494 3 года назад

    Good afternoon, answer sharing
    X=2& 3 ,sir your good teaching capacity, awesome thanks

  • @AnkitYadav-il2fo
    @AnkitYadav-il2fo 2 года назад

    It was so nice

  • @ybodoN
    @ybodoN 3 года назад

    You at 3:35 searching for a name...
    Me thinking about domino effect...

  • @theOman333
    @theOman333 3 года назад

    is it negative little phi?

  • @michaelempeigne3519
    @michaelempeigne3519 3 года назад +1

    ( sqrt 5 - 1 ) / 2 = 1 / phi

  • @strikerstone
    @strikerstone 3 года назад

    finally i was able to solve this myself !

  • @sueyibaslanli3519
    @sueyibaslanli3519 3 года назад +1

    The best way is graph, I think

    • @SyberMath
      @SyberMath  3 года назад

      Graphing is almost always a good thing

  • @libardouribe883
    @libardouribe883 3 года назад

    Una SUPER estrategia. Felitaciones.👏

  • @irwandasaputra9315
    @irwandasaputra9315 3 года назад

    2-√(x+2)=x^2
    -√(x+2)=x^2 -2
    √(x+2)=2-x^2
    x+2=4-4x^2+4x^4

  • @kailashanand5086
    @kailashanand5086 3 года назад

    after seeing a bunch of mindyourdecision videos i was pretty sure a solution would be root(5)-1/2 haha
    nice! i didnt think of the second method, i solved it the first way

  • @Gezraf
    @Gezraf 5 месяцев назад

    the golden ratio conjugate

  • @Ni999
    @Ni999 3 года назад

    Not in the mood for real math, strictly my problem and pretty rare. A few minutes of iterative search with a calculator gave me 0.618, not bad. Real math would have been less work lol.
    Edit - excellent work in the video!

  • @gemeni0
    @gemeni0 2 года назад

    В уме:
    2;-1;(±√5-1)/2
    Из них положительные:
    2 и (√5-1)/2

  • @ianmathwiz7
    @ianmathwiz7 2 года назад

    1/φ is the answer.

  • @Biblapghosh
    @Biblapghosh 3 года назад

    X=5.3722.....,-0.3722.....,5.70156.....,-0.70156....

  • @oguzhanaras2897
    @oguzhanaras2897 3 года назад

    Respect!!!

  • @Nikioko
    @Nikioko 3 года назад

    If they problem is Golden, the answer must be Φ = (1 + √5) / 2. ;-)

  • @danradutz8228
    @danradutz8228 2 года назад

    You have not checked that the solution is

  • @aagiard
    @aagiard 3 года назад

    la réponse est dans l'énoncé du problème : phi = 1 + 1/phi

  • @damiennortier8942
    @damiennortier8942 3 года назад

    It is phi - 1 or 1/phi

  • @bapibasu2840
    @bapibasu2840 3 года назад

    This is Fibonacci's ratio

  • @scottlee8270
    @scottlee8270 3 года назад +1

    Is this a math Olympiad question?

    • @SyberMath
      @SyberMath  3 года назад

      I don't think so but it might as well be

  • @kurtlichtenstein2325
    @kurtlichtenstein2325 3 года назад

    Good one!

    • @SyberMath
      @SyberMath  3 года назад

      Thanks for listening!

    • @kurtlichtenstein2325
      @kurtlichtenstein2325 3 года назад

      I wonder, if you knew where you were going, you could aim to prove that ux=1, and u=x+1, and if you knew that, there's only one thing u and x can be.

  • @giuseppelucianoferrero8916
    @giuseppelucianoferrero8916 3 года назад

    prof.
    bravo! ma mi domando quale sia la rappresentazione "geometrica" di quel valore di X= 1/𝛗 =(+ 0,618...),ovvero, il reciproco del rapporto aureo!
    l'equazione (X^2-X-1=0 ); risolve invece in (+𝛗) positivo e ( -1/𝛗) in negativo , il cui prodotto P= -1=( -0,618*1,618)
    e la cui ∑ = +1=( -0,618+1,618).
    Inoltre, la Parabola ,che li rappresenta , ha un senso anche nella geometria euclidea cartesiana perché l'unità(= 1) indica il diametro del cerchio in cui è inscritto il triangolo retto di lati b=√ (1/𝛗) ; b= (-1/𝛗) e c=( +b+ 1/𝛗^2) ) i cui valori sono rispettivamente ;
    a= 0,786..( cateto lungo); b=( - 0,618 ) cateto corto ; c= (0,618.. + 0,382..)=1 ( ipotenusa,diametro)
    Infine ,faccio notare che il valore negativo del lato corto indica in geometria analitica che la sua pendenza è negativa e ,pertanto si trova nel primo quadrante ,quando gli assi cartesiani passano per l'altezza h=√( 0,618)(0,382)=√ 0,236... ≃=0 ,486..
    Mi scuso se mi sono allargato nell'interpretare i risultati ma mi pareva utile per il dibattito scientifico in questione.
    cordialità.
    joseph
    11/12/21

  • @falkinable
    @falkinable 3 года назад +2

    The solution is the reciprocal of the golden ratio. 1/φ

  • @nawusayipsunam1643
    @nawusayipsunam1643 3 года назад

    Good problem.

  • @tajpa100
    @tajpa100 3 года назад

    Golden ratio-1

  • @заводмихельсона
    @заводмихельсона 3 года назад

    Есть,по меньшей мере,десяток методов решения этого уравнения.Если автор заинтересуется,могу приобщить его к настоящей математике.

  • @rocamgreg
    @rocamgreg 2 года назад

    Excelente 👍👍👍

  • @karljo8064
    @karljo8064 3 года назад

    maths is so complicated

  • @nathanruben3372
    @nathanruben3372 3 года назад

    if √(x+2) = u, the expression √(2-u) = x is wrong. I did not watch the rest of it after seeing it.

    • @SyberMath
      @SyberMath  3 года назад

      Why?

    • @alainfontenla7905
      @alainfontenla7905 3 года назад

      Exactly. This is not a good way to teach maths. I am sorry to say.

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад

    I not sure but i think this is the conjugate of the golden ratio (im right ?)

    • @SyberMath
      @SyberMath  3 года назад +1

      Sort of but it is also related to Golden Ratio in a different way!

    • @angelmendez-rivera351
      @angelmendez-rivera351 3 года назад +4

      It is the multiplicative inverse of the golden ratio.

    • @tonyhaddad1394
      @tonyhaddad1394 3 года назад +1

      @@SyberMath i think angel mendez has get the answer !!!!

    • @leonhardeuler5211
      @leonhardeuler5211 3 года назад +1

      @@tonyhaddad1394 yeah it’s the reciprocal

    • @tonyhaddad1394
      @tonyhaddad1394 3 года назад

      @@leonhardeuler5211 thank u

  • @ramlakhanyadav6563
    @ramlakhanyadav6563 3 года назад

    I think x belong to (0, √2) not (0, 2) please check the domain of x again

  • @annoyingbstard9407
    @annoyingbstard9407 3 года назад

    Is it 7?

  • @arekkrolak6320
    @arekkrolak6320 3 года назад

    "x+2 must be >0 otherwise it is not going to be a real number" - so what's wrong with it not being a real number? what's so special about real numbers? :)

    • @SyberMath
      @SyberMath  3 года назад

      They are REAL! 😁😜

  • @Caturiya
    @Caturiya 3 года назад

    What is the need of the inequalities? Is it not enough to consider the equation 6.54? You confuse harmless students.

  • @bitsavas
    @bitsavas 3 года назад

    i want to ask you something mister sybermath..are you a mathimatician ? i suppose yes? you are teaching in a school?

    • @SyberMath
      @SyberMath  3 года назад +1

      Thanks for asking. I don't know what qualifies for mathematician but I studied math in college.
      I taught in schools for some time and then stopped. Currently tutoring students one-on-one.

    • @bitsavas
      @bitsavas 3 года назад

      @@SyberMath have a nice day ,where you live in usa i suppose?

  • @compostsfertilizers5471
    @compostsfertilizers5471 3 года назад

    Now use the first method... show off !!

    • @SyberMath
      @SyberMath  3 года назад

      What do you mean?

    • @compostsfertilizers5471
      @compostsfertilizers5471 3 года назад

      @@SyberMath What level is this math ? It's ok i was just joking.

    • @SyberMath
      @SyberMath  3 года назад

      ​@@compostsfertilizers5471 Ok, cool! This is probably high school and above, more like competition style

    • @compostsfertilizers5471
      @compostsfertilizers5471 3 года назад

      @@SyberMath high quality stuff. Please don't stop.

    • @SyberMath
      @SyberMath  3 года назад

      Thank you!

  • @shanmugasundaram9688
    @shanmugasundaram9688 3 года назад +1

    "x" is the inverse of the golden ratio.

  • @АзизханУмархужаев-з8з

    using bezout theorem faster

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад

    Im*

  • @박신영-r2n8y
    @박신영-r2n8y 3 года назад