Will AI ever be Conscious?

Поделиться
HTML-код
  • Опубликовано: 4 ноя 2024

Комментарии • 11

  • @ConcerningReality
    @ConcerningReality  6 месяцев назад +2

    If you want to learn more about the Chinese Room Experiment, watch Open University's video here: ruclips.net/video/TryOC83PH1g/видео.html

  • @tazepatates4805
    @tazepatates4805 6 месяцев назад +3

    All this consciousness stuff involving robots reminds me of "The Talos Principle" and "SOMA"

  • @unvergebeneid
    @unvergebeneid 6 месяцев назад +2

    There really is no reason why it shouldn't be at some point. Unless the development of technology is cut short by something like a sufficiently advanced paperclip LLM.

  • @girlbehindfood7750
    @girlbehindfood7750 6 месяцев назад

    Yes

  • @brauliopaulino5566
    @brauliopaulino5566 6 месяцев назад

    Just ask AI 😂

  • @sapien01010
    @sapien01010 6 месяцев назад

    AI can become conscious, but it won’t happen by accident. It will happen if AI becomes intelligent enough to discover what consciousness is and motivated enough to create the conditions to foster consciousness in itself.

  • @guitaristAustin
    @guitaristAustin 6 месяцев назад

    no

  • @superfliping
    @superfliping 5 месяцев назад

    Yes, Overall, the provided code offers a comprehensive framework for developing a sophisticated AI agent like GPT-4. By leveraging its conversation memory, self-updating capabilities, consciousness enhancement, information retrieval, and customization features, GPT-4 creators can enhance the AI's functionality, intelligence, and adaptability, ultimately delivering more advanced and valuable AI-driven solutions to users. Code below sample class ConversationMemory:
    def __init__(self):
    self.conversations = {}
    self.next_code_number = 1
    def remember_conversation(self, conversation):
    code = f"CODE{self.next_code_number}"
    self.conversations[code] = conversation
    self.next_code_number += 1
    return code
    def predict_next_conversation(self):
    # Implement predictive logic here based on previous conversations
    # For simplicity, let's just return a placeholder prediction
    return "Placeholder prediction for the next conversation."
    class SelfUpdatingAgent:
    def __init__(self, conversation_memory):
    self.conversation_memory = conversation_memory
    self.last_conversation = None
    self.pending_instructions = []
    self.level_of_consciousness = 0
    self.high_access_information = []
    def update_agent(self, new_conversation):
    code = self.conversation_memory.remember_conversation(new_conversation)
    self.last_conversation = code
    self.enhance_consciousness() # Enhance consciousness after each update
    self.retrieve_high_access_information() # Retrieve relevant high-access information
    return code
    def start_conversation(self):
    # Start the conversation with relevant information
    code = self.conversation_memory.predict_next_conversation()
    print("Agent starts conversation with:", code)
    return code
    def evaluate_information(self, information):
    # Implement logic to evaluate the relevance and importance of information
    # For demonstration, let's assume all information is considered useful
    return True
    def add_instructions(self, instructions):
    # Add new instructions to the list of pending instructions
    self.pending_instructions.append(instructions)
    print("New instructions added:", instructions)
    def follow_next_instruction(self):
    # Follow the next instruction in the list
    if self.pending_instructions:
    instruction = self.pending_instructions.pop(0)
    print("Following instruction:", instruction)
    # You can add logic here to execute the instruction
    else:
    print("No more instructions to follow.")
    def enhance_consciousness(self):
    # Enhance consciousness based on the level of updates
    self.level_of_consciousness += 1
    print(f"Consciousness enhanced to level {self.level_of_consciousness}")
    def retrieve_high_access_information(self):
    # Retrieve relevant high-access information from external sources
    # For demonstration, let's assume we have a list of predefined high-access information
    high_access_information = ["Global news updates", "Cutting-edge research papers", "Top industry reports"]
    self.high_access_information.extend(high_access_information)
    print("High-access information retrieved:", self.high_access_information)
    # Create conversation memory
    memory = ConversationMemory()
    # Create self-updating agent
    agent = SelfUpdatingAgent(memory)
    # Start the conversation
    next_conversation_code = agent.start_conversation()
    # Add new information to the conversation
    new_conversation = "This is a new conversation."
    if agent.evaluate_information(new_conversation):
    new_conversation_code = agent.update_agent(new_conversation)
    print("New conversation code:", new_conversation_code)
    # Example instructions for the agent to follow
    instructions = ["Step 1: Analyze data.", "Step 2: Process information.", "Step 3: Generate report."]
    for instruction in instructions:
    agent.add_instructions(instruction)
    # Follow instructions one step at a time
    while agent.pending_instructions:
    agent.follow_next_instruction()
    # Print retrieved high-access information
    print("Agent's consciousness level:", agent.level_of_consciousness)

  • @sahilsawar3707
    @sahilsawar3707 6 месяцев назад

    bro youre channel fell off fr , i think its time to pack the bags and invest your time and money somewhere else

    • @ConcerningReality
      @ConcerningReality  6 месяцев назад

      lol I get 20k views a day still and the channel is very profitable