Arc Length: Perimeter of an Ellipse | Lecture 36 | Vector Calculus for Engineers

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 40

  • @kephalopod3054
    @kephalopod3054 3 года назад +18

    I'm impressed how well you can write right-to-left behind the glass so that we see things normally left-to-right!

    • @Corcoancaoc
      @Corcoancaoc 3 года назад +30

      No, he just flips the video horizontally in post-production :)

    • @thequarrymen58
      @thequarrymen58 3 года назад +5

      @@Corcoancaoc lmao

    • @sp10sn
      @sp10sn 3 года назад +5

      I remember when teachers would write backwards on the early, mirrored overhead projectors. Pretty wild.

  • @demon420rekt
    @demon420rekt 3 года назад +4

    My man, you deserve the WORLD. You saved me from my calculus test today. You got a sub man and I'm here to stay

  • @REddy-u5q
    @REddy-u5q 4 месяца назад

    A while back I figured out an easy calculation to use in a pinch that is about 98-99% accurate. Assume "a" is the longer axis, "b" is the shorter axis. Axis being the radius distance from the center. For ellipses with an a/b ratio up to around 5/1, use Perimeter = [(3.7a/b)+2.4]b.
    If you get into more extreme ellipses, for an a/b ratio up to 10/1, use P = [(3.84a/b)+2]b. For a/b ratio up to 15/1, use P = [(3.9a/b)+1.7]b. For up to 20/1, P = [(3.93a/b)+1.55]b.
    You can also use a polynomial function (for whatever crazy reason). For a/b ratios up to around 5/1 try, P = [(0.072a/b)^2 + 3.26a/b + 2.93]b. For a/b ratios up to 20/1, try P = [(0.007a/b)^2 + 3.78a/b + 2.1]b.

  • @aikafuwa7177
    @aikafuwa7177 2 года назад

    In the derivation at 6:22 time mark there is a floating open parenthesis without a matching close parenthesis.

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  2 года назад +1

      Thanks! I can fix it on Coursera. RUclips cannot.

    • @Jihad_Bankai
      @Jihad_Bankai Год назад

      @@ProfJeffreyChasnovcould you please show me how to integrate P = integral sqrt((1-(e^2)*cos^2(theta)*d(theta) at the end of video? Thanks a lot 😊

    • @黄媚-o2y
      @黄媚-o2y Год назад

      @@Jihad_Bankai You can integrate that by applying the taylor expansion for root(1-x^2)

  • @mariahm7840
    @mariahm7840 2 месяца назад

    Thank You Professor

  • @darthTwin6
    @darthTwin6 2 года назад

    I actually followed along really well here surprisingly! Nice explanation and creative techniques!

  • @thilan.dissanayaka
    @thilan.dissanayaka 3 года назад +1

    It's awesome thank you.

  • @anoushkamathew8228
    @anoushkamathew8228 Год назад

    Why are the parameters from 0 to π/2?

    • @billthomas7644
      @billthomas7644 Год назад

      You only have to compute a quarter of the way around due to symmetry, as the ellipse has four segments of equal length.

  • @SphereofTime
    @SphereofTime 7 месяцев назад +1

    2:07

  • @thedarkknight1865
    @thedarkknight1865 3 года назад

    Thanks a lot professor

  • @berndmayer3984
    @berndmayer3984 3 года назад +1

    2 pi r is not a closed Form. Pi is defined as U/d

  • @stevegovea1
    @stevegovea1 3 года назад +1

    I don't bother with all this math, I simply take a waist tape measure and measure the ellipse. 😎.
    I began watching many educational videos of ellipses when I wanted to know the minor or major axis with just knowing the perimeter.

  • @johnnisshansen
    @johnnisshansen 3 года назад

    You did not show how to calculate the P of an ellipse. Just how the basic machinery stalled.

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  3 года назад +3

      That's it! The rest is approximations or numerics.

    • @johnnisshansen
      @johnnisshansen 3 года назад +2

      @@ProfJeffreyChasnov Pi is aproximated by 3.14... and that allows us to calculate numeric.
      The ellipse perimeter also has an infinite expansion, that allows for calculation to any desired approximation.

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  3 года назад +5

      @@johnnisshansen I agree. What I want to say is that there is no simple formula for the perimeter in terms of a and b comparable to 2 pi r for the circle. We can't just introduce a new constant.

    • @johnnisshansen
      @johnnisshansen 3 года назад

      @@ProfJeffreyChasnov we could find Taylor series for a function pi(x) 0

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  3 года назад +2

      @@johnnisshansen The constant depends on the eccentricity of the ellipse?

  • @AmanDeep-wy1qx
    @AmanDeep-wy1qx 3 года назад +3

    I saw you on breaking bad

    • @azmath2059
      @azmath2059 3 года назад

      yeah, his middle name is Heisenberg.

  • @a70duster
    @a70duster 2 года назад

    Weathermen of the 80s got NOTHING on you.

  • @alessandropancrazio
    @alessandropancrazio 3 года назад +1

    Let's take a minute to appreciate how this man pushed himself out of his comfort zone and learned to write right to left for only teaching purposes 🙏

    • @GammaFZ
      @GammaFZ 3 года назад +1

      lmfao he inverted it horizontally

    • @eflick
      @eflick Месяц назад

      @@GammaFZ he did the entire equation horizontally backwards? absolutely stunning mathsmetician

  • @kmcgushion
    @kmcgushion 3 года назад

    Hey Jeff, I loved you video on calculating the perimeter of an ellipse. I believe I have discovered a new way. Can I share it with you? If so, can I get your email? Kevin