Markov Models

Поделиться
HTML-код
  • Опубликовано: 29 ноя 2024

Комментарии • 79

  • @achmadaqsahusain5046
    @achmadaqsahusain5046 4 года назад +12

    I have learned more about markov chain from your three minute video than my professor the entire semester. Thank you. Keep up the amazing work.

  • @dhirgajbhiye06
    @dhirgajbhiye06 3 года назад +8

    Your simplistic explanation is rare and very interesting!!!
    I think you should post more videos!!

  • @melissaedmondson5956
    @melissaedmondson5956 5 лет назад +4

    This is very helpful. I've come back to this video several times as a refresher.

  • @stephennalewanyj6904
    @stephennalewanyj6904 2 года назад

    You taught a lot in three minutes and I learned a lot in three minutes. Thank you.

  • @MyVinodkumar
    @MyVinodkumar 6 лет назад +9

    Explained in the simplest way possible. Would love to see Conditional Random Field algorithm as well.

  • @n00b_ninja
    @n00b_ninja 5 лет назад +6

    Hands down one of the best introductory videos on this topic!

  • @masterpee2328
    @masterpee2328 3 года назад +1

    The best so far for an introduction.

  • @leonhardeuler9839
    @leonhardeuler9839 6 лет назад +2

    This is the best explanation so far.

  • @rominawild6235
    @rominawild6235 3 года назад +1

    Take it from Rommie: Markov Models are great! - Wow! Great introductory video and made especially for me ;)

  • @rykhan2003
    @rykhan2003 7 лет назад +4

    fantastic ;-) please do some more videos for presenting such concepts, beautifull

  • @anonymous.reviewer
    @anonymous.reviewer 3 года назад

    Thanks so much for such a simple and clear explanation!!!

  • @vinaybhujbal4347
    @vinaybhujbal4347 Год назад

    In the video mistakenly 1.0 has been added in the last column of first row of the transition matrix.

  • @ananalysisofthingsinlife.8561
    @ananalysisofthingsinlife.8561 4 года назад +3

    Thank you so much for this! Your explanation was super clear and to the point!

  • @shusrutorishik8159
    @shusrutorishik8159 4 года назад +1

    that was an awesome explanation! please do make more videos like this!

  • @benjaminjordan2330
    @benjaminjordan2330 7 лет назад +16

    I couldnt hear what you said over the sound effects

  • @ericgamor9975
    @ericgamor9975 3 года назад

    Great work man. Simple and superb explanation.

  • @anupamasoni6891
    @anupamasoni6891 7 лет назад +1

    I like this video very much...thanku it help in my project very much

  • @DeepCrazyWorld
    @DeepCrazyWorld 5 лет назад +1

    Amazing video,

  • @prithvirohira1372
    @prithvirohira1372 3 года назад +2

    simplest explanation ever

  • @nigelptv
    @nigelptv 6 лет назад +1

    Very well done, thank you for a clear explanation!

  • @otiebrown9999
    @otiebrown9999 6 лет назад +3

    Good - love the graphics!

  • @vinaybhujbal4347
    @vinaybhujbal4347 Год назад

    why is this video so underrated man

  • @dustin_echoes
    @dustin_echoes 7 лет назад +1

    The presentation is brilliant.

  • @hgtrad7655
    @hgtrad7655 4 года назад

    Great thank you. We use Markov by increment position in radar detection.

  • @cyunmingsiu3555
    @cyunmingsiu3555 8 лет назад +1

    Marvelous explanation!! Thank you!

  • @hgtrad7655
    @hgtrad7655 5 лет назад

    Great explanation, in fact we also use Markov to create movement dr/dt in radar technology.

  • @yashkaliapiano
    @yashkaliapiano 4 года назад

    It was a good explaination but I would suggest using sound effects a bit more sporadically as there's a lot more sound in there than it needs to be.

  • @bcbcbusy
    @bcbcbusy 9 лет назад +1

    Neat animations and clear explanations!

  • @blabbery5698
    @blabbery5698 2 года назад

    Is there a specific steps in markov model? Pls answerrr

  • @PaweKaczynski
    @PaweKaczynski 6 лет назад +1

    Best video on markov models!

  • @kimiyamaleki8368
    @kimiyamaleki8368 Год назад

    great videoreally awesome! thanks

  • @amreshjha1357
    @amreshjha1357 5 лет назад +1

    Great introduction!

  • @inazuma3gou
    @inazuma3gou 5 лет назад

    Nice video. Do you reach a steady state after multiplying the Markov matrix many times?

    • @lanevotapka4012
      @lanevotapka4012  5 лет назад

      Yes, in this case you do. Though there are some transition matrices that will not converge when raised to a large power.

  • @AhamedKabeer-wn1jb
    @AhamedKabeer-wn1jb 4 года назад

    Good explanation..

  • @AlexVoxel
    @AlexVoxel 5 лет назад

    Nice explanation, thank you!

  • @RushikeshTade
    @RushikeshTade 7 лет назад

    best explaination till now..

  • @nithyagogtay3145
    @nithyagogtay3145 3 года назад

    Really helpful! Thank you! Thank you! Thank you!

  • @Hamza-vw4rz
    @Hamza-vw4rz 3 года назад +1

    Markovelous explanation

  • @bhavya2301
    @bhavya2301 4 года назад +2

    You Should Be Thanked More Often.

  • @mathankumars896
    @mathankumars896 4 года назад

    Hi ! Nice explanation. Can you tell how to calculate the probability (1.18sec.) 0.5, 0.4,0.1? please

    • @lanevotapka4012
      @lanevotapka4012  4 года назад +2

      Glad you found the video helpful. Those are transition probabilities, and one way to obtain them is to observe the system (Rommie) for a long period of time as she stochastically transitions from a given state (her house) to the other states. Let's say, for example, you observed 20 transitions, and she went to work 10 out of 20 times, you get a 0.5 probability. If she went to her house 8 out of 20 times, you get a 0.4 probability, etc.

    • @mathankumars896
      @mathankumars896 4 года назад +1

      @@lanevotapka4012 Hey Lane, thank you so much for your answer.

  • @divyahatti9765
    @divyahatti9765 3 года назад

    Do more videos on this topic...

  • @WhatAdityaDoes
    @WhatAdityaDoes 7 месяцев назад

    Best video on this topic fs

  • @trishaneelgogoi4980
    @trishaneelgogoi4980 5 лет назад

    Great video

  • @Diego0wnz
    @Diego0wnz 4 года назад

    Someone tell me practical applications for this?

  • @FlywithZahanat
    @FlywithZahanat 4 года назад

    Well explained

  • @hiteshkumar3076
    @hiteshkumar3076 6 лет назад +1

    nicely done

  • @wazxserd
    @wazxserd 7 лет назад +1

    nice work!

  • @AbhishekVerma-kj9hd
    @AbhishekVerma-kj9hd 2 года назад

    Markov models are great

  • @derejehailemariam677
    @derejehailemariam677 4 года назад

    The sound effect is a bit too loud.

  • @stephenogbodo1328
    @stephenogbodo1328 3 года назад

    You're amazing!

  • @facebren
    @facebren 4 года назад +1

    Rommie probably doesn't like the fact that you are trying to predict where she will be and can do so into infinity lmao

  • @pickarpit
    @pickarpit 7 лет назад

    Thanks! It really helped!

  • @thelabadabada
    @thelabadabada 8 лет назад +1

    love it ! thank you

  • @vijayramadurai1495
    @vijayramadurai1495 7 лет назад

    what is starting probabality factor??

    • @lanevotapka4012
      @lanevotapka4012  7 лет назад

      The starting probability vector is something that you need to construct yourself or is provided to you. Each place in the vector represents the state, and you need to put the probability that the system starts in those states. That means, if we know that Rommie (in the movie) always starts from home, then we put a one in that spot of the starting probability vector, and put zeros everywhere else.

    • @viveksapate3272
      @viveksapate3272 6 лет назад

      Good question Vijay .

  • @hazemwhite6561
    @hazemwhite6561 6 лет назад +1

    Thank you!

  • @nourabd8261
    @nourabd8261 5 лет назад

    Please sir if there possible to uplode me the slides

  • @yulinsun8873
    @yulinsun8873 2 года назад

    Already tossed my textbook into the trash can.

  • @danilzubarev2952
    @danilzubarev2952 3 года назад

    Very clear.

  • @haziqkhan3377
    @haziqkhan3377 2 года назад

    Love from Pakistan 🇵🇰❤️

  • @bimbrawkeshav
    @bimbrawkeshav 7 лет назад

    Awesome!

  • @sanjaisrao484
    @sanjaisrao484 Месяц назад

    Thanks

  • @professordeano
    @professordeano 7 лет назад

    thank you this help alot ....don't forget to like and subscribe yall

  • @yourcoffeee
    @yourcoffeee 7 лет назад

    That's awesome

  • @evetrescoemes5522
    @evetrescoemes5522 3 года назад

    Did anybody else try and work out the chances of where she will be in the next few periods and accidentally fry your brain?

    • @lanevotapka4012
      @lanevotapka4012  3 года назад

      That's why you just let the computer do it for you :)

  • @lucaslopesf
    @lucaslopesf 6 лет назад

    Muito bom

  • @homeXstone
    @homeXstone 7 лет назад +11

    while the animation was great, i think you over-did it with the sounds effects. especially the "punch" sound is super annoying :(

  • @swayamshreepatra4887
    @swayamshreepatra4887 6 лет назад

    Wow !!

  • @meocats
    @meocats 6 лет назад

    the lined paper is annoying, it is not required

  • @715Clipss
    @715Clipss Год назад

    Markov models are a pain in the ass…ooops

  • @anglewyrm3849
    @anglewyrm3849 2 года назад

    yay, not a video of a homosapien drawing illegible hen scratchings on a white board

  • @ancachiriac3838
    @ancachiriac3838 6 лет назад +1

    Thank you !