Recommender Systems

Поделиться
HTML-код
  • Опубликовано: 5 янв 2025

Комментарии • 107

  • @daniel10263
    @daniel10263 8 лет назад +11

    A very fascinating lesson in how the recommendation system of Netflix, Facebook works, etc. Thank you so much CS50 staff!

  • @nsambataufeeq1748
    @nsambataufeeq1748 Год назад +3

    When i audited this course 7 years ago, i had no idea i will do ML for a living.

  • @lukmanoyee3731
    @lukmanoyee3731 5 лет назад +6

    WHAT A SIMPLE AND PRECISE EXPLANATION....... thank YOU SIR

    • @YEESJAY
      @YEESJAY 4 года назад

      ITS SOOOOOOOOOOOOOOOO HARD

  • @harlongbitimung4108
    @harlongbitimung4108 5 лет назад +4

    Great video. I appreciate how you have explained the concept in a much comprehensible way.

  • @alaaalqhtani6131
    @alaaalqhtani6131 7 лет назад +5

    Thank youuuu soon much!
    Such simple and detailed explanation, you can't imagine how much this helped me!
    It gives me the idea of 'recommendation' and their matrices
    Thanks again ..

  • @marshalldteach1109
    @marshalldteach1109 7 лет назад +98

    I thought your Linuz Torvalds, but thanks, great explanation!

    • @wow404notfound4
      @wow404notfound4 6 лет назад +2

      same, haha, I came across thinking it was Linus talking

    • @rahul_bali
      @rahul_bali 6 лет назад +1

      You are!?

    • @sasikanth1329
      @sasikanth1329 6 лет назад

      Ya exactly..... 😀

    • @etienneekpo348
      @etienneekpo348 6 лет назад

      quite true ... thought it was him!!

    • @ogskun
      @ogskun 6 лет назад

      maybe he's a fan..or he's an impersonator of Linus hehehe

  • @sanskrutidarpan9107
    @sanskrutidarpan9107 5 лет назад +2

    Thank You.Explaination is so simple so anybody can easily understand.

  • @kristhianortiz151
    @kristhianortiz151 8 месяцев назад +1

    this was 8 years ago, amazing

  • @nitroflap
    @nitroflap 4 года назад +1

    Linus Torvalds explaining us recommendation systems... interesting

  • @tharangasaitm
    @tharangasaitm 8 лет назад +14

    Thanks for the simple explanation.

  • @ArenMarkB
    @ArenMarkB 6 лет назад +8

    Amazing lecture. Thank you.

  • @adrianfathursetyawan9247
    @adrianfathursetyawan9247 4 года назад

    thanks for your explanation about the remcomendation 's system sir

  • @YuzuruA
    @YuzuruA 4 года назад

    Unfortunately Netflix seem to have throw all that work away

  • @johng5295
    @johng5295 4 года назад

    Thanks in a million. Awesome. Where have you been all these years.

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 4 года назад

    Great presentation.

  • @rkgrap
    @rkgrap 5 лет назад

    Great explanation sir

  • @maryammehboob8285
    @maryammehboob8285 4 года назад

    Thanks for simple and brief explanation.

  • @Tori_V_
    @Tori_V_ 6 лет назад

    Great video! Very explanatory and easy to understand!

  • @georgekokonya8892
    @georgekokonya8892 4 года назад

    Thank you. It's very simple and easy to understand

  • @manujas1777
    @manujas1777 6 лет назад

    Thanks sir good work👍

  • @MrHiwa1988
    @MrHiwa1988 6 лет назад

    thanks for you, and for using simple example for understanding this topic

  • @waseemanwar3327
    @waseemanwar3327 5 лет назад +1

    A fantastic way of explaining the content. I understood the underlying concept. Thank You so much.

    • @YEESJAY
      @YEESJAY 4 года назад

      Your not welcome :(

  • @deepgsingh
    @deepgsingh 5 лет назад

    very nice explanation

  • @KevinEontrainer381
    @KevinEontrainer381 6 лет назад +1

    > Want to learn about recommender system
    > Sees Bechdel Test
    > Pauses Video
    > Search "Why is Bechdel Test even necessary?" For 30 minutes

  • @s.e.7268
    @s.e.7268 4 года назад +1

    omg, it is an amazing lecture!

  • @mehdijb752
    @mehdijb752 7 лет назад

    thanks for your great and simple explanations

  • @rumbl3d
    @rumbl3d 2 года назад

    For a moment I thought he was Linus Torvalds

  • @annisas.a3580
    @annisas.a3580 4 года назад

    omg I just saw this video on 2020
    thanks, very clear explanation!

  • @MaoRuiqi
    @MaoRuiqi Год назад

    Thank the Math Gods that sent you to me!

  • @sachithadilshan9191
    @sachithadilshan9191 4 года назад

    Thanks
    Really helpful

  • @asutoshmittapalli
    @asutoshmittapalli 4 года назад +2

    Didn't know Linus Torvalds taught CS50

    • @YEESJAY
      @YEESJAY 4 года назад

      IF YOU DIDNT KNOW THAT THEN YOU CANT BE IN CS50 I AM IN THEIR UNIVERSITY FREE SCHOLORSHIP

  • @xhole
    @xhole 8 лет назад

    it seems like an efficient tag system is more important than recommender algorithm

  • @luanzambinatimanara2529
    @luanzambinatimanara2529 6 лет назад

    Great video! Congrats

  • @safwankhan199
    @safwankhan199 4 года назад

    THIS man is an og explainer lol

  • @rickyharewood
    @rickyharewood 7 лет назад

    Brilliant explanation!

  • @sanyakapur6536
    @sanyakapur6536 6 лет назад

    Great explanation!

  • @stelakoul
    @stelakoul 9 лет назад +2

    Scaz for president!!!

  • @oussamaoussama6364
    @oussamaoussama6364 8 лет назад

    Excellent explanation! Shukran.

    • @YEESJAY
      @YEESJAY 4 года назад

      EYVALLAH BEY

  • @gaurangsolanki2542
    @gaurangsolanki2542 4 года назад

    you look like young Sheldon's father

  • @madhur089
    @madhur089 6 лет назад

    good job...thanks for explaining in simple way :)

  • @iftekharjoy7118
    @iftekharjoy7118 6 лет назад

    Just awesome!

  • @agil-j4n
    @agil-j4n 6 лет назад +1

    Great examples, but I really wonder. Doesn't this kind of peration take too long to run? I mean running this kind of algorithm would probably take 30ms, but considering you might have thousends of users trying to run the algorithm simultaneously, it might be a pain in the ass. Aren't there better ways to deal with it?

  • @skandarbenali3695
    @skandarbenali3695 5 лет назад

    clear explanation. thank's

  • @piotr780
    @piotr780 5 лет назад

    Where is the rest of this course ? I dont see the playlist

  • @jm7124
    @jm7124 8 лет назад

    Thanks for sharing this video.

  • @prashantchavan789
    @prashantchavan789 9 лет назад +1

    very excellent talk.

  • @G47_Code
    @G47_Code 3 года назад +1

    amazing lesson. thank you professor

  • @hanggianggono3765
    @hanggianggono3765 8 лет назад

    nicely done, i will implement content based since it is more reasonable in early

  • @G47_Code
    @G47_Code 3 года назад

    진짜 굉장한 강의들이다 정말 하버드 진짜 만세다 ㅠㅠ

  • @SayantanTalukder
    @SayantanTalukder 8 лет назад

    Well what about the Google search engine? What kind of recommender system do they use? How do they decide the precedence of the search results for an user? Do they use content based filtering based on the search keywords, or does they use a hybrid recommender system where they first collect sites from the internet based on the search terms and then use collaborative filtering based upon all the users who have searched using the specific terms and then predict which link the user is most likely to click on based on what others have clicked on?

    • @lechat5717
      @lechat5717 7 лет назад

      This is an another topic, called Information Retrieval

    • @dushyantsharma4912
      @dushyantsharma4912 4 года назад

      Google uses Page Rank algorithm for listing the search results and I think that they use hybrid system for recommending similar searches.

  • @1tridibdey
    @1tridibdey 5 лет назад

    Can I use the matrix factorization technique for recommendation where the scenario is like I have 972 unique user and 3810 unique items and 24 unique country id. Like in a common movie recommendation ratings are there and we predict ratings and then show recommendation system. In my case I have country id instead of ratings. is it fundamentally incorrect or I can go ahead with this?

  • @محمدعبدالوهابعبدالحليم

    thanks a million for you

  • @희망나무-e1y
    @희망나무-e1y 5 лет назад

    Thanks for your lectures. Is it code Python?

  • @oskrm
    @oskrm 9 лет назад

    nice videos

  • @Lamoboos223
    @Lamoboos223 7 лет назад

    thanks, you helped me in my GP

  • @vovantanat9615
    @vovantanat9615 3 года назад +1

    Yo after those years this lecture is so good 😱😱

  • @jamesrusso4220
    @jamesrusso4220 8 лет назад +5

    lol the CC spells boolean as "bullion"

  • @shyland20
    @shyland20 6 лет назад

    i wold like to know what is the filed for "software engineer" to study in order to control this filed and specializes in this field ? thanks (i'm looking to hire someone at my location)

  • @hiwotgirma6234
    @hiwotgirma6234 3 года назад

    thank u so much

  • @safrizal513
    @safrizal513 3 года назад

    thank you

  • @chinmayjoshi9114
    @chinmayjoshi9114 8 лет назад

    How do you determine the value of k in SVD? Is stochastic gradient descent used for that or is it a completely different method?

  • @nguyenhuyphat6020
    @nguyenhuyphat6020 6 лет назад +1

    Hi sir, can you please give me a lecture on Building Recommendation System ?

  • @ehsanamidi4619
    @ehsanamidi4619 8 лет назад

    thanks,for video

  • @harshalipatil8425
    @harshalipatil8425 7 лет назад

    Thank you sir.

  • @muwaffaqimam3790
    @muwaffaqimam3790 6 лет назад

    Thank you .

  • @palermodpr
    @palermodpr 7 лет назад

    Thank you a lot!

  • @naatworld.
    @naatworld. 7 лет назад

    Thanks Sir

  • @ShreyaBhandare
    @ShreyaBhandare 8 лет назад

    amazing, thanks

  • @CodeXBro
    @CodeXBro 5 лет назад

    Thank you

  • @ErikPontifexAudio
    @ErikPontifexAudio 9 лет назад

    There must be a better way to do this...I don't identify with most of what the "big sites" recommend me. RUclips, for example, keeps recommending me chess related videos when I've never watched anything remotely chess related as far as I know. I guess this must mean that my tastes are somehow adjacent to the subject of chess, but it sounds like the system would yield better results overall if it could somehow realize that I am not responding to that particular subject.

    • @wnwillyndirangu
      @wnwillyndirangu 9 лет назад +1

      +Erik Pontifex your concern is genuine but another aspect of machine learning (which is basically a field of AI) is to try and predict things you might like just like netflix . one way of doing this is grouping people (clustering ) with similar tastes together . This might be what youtube does and it just might happen that the cluster you are in consists of people who like chess thus the recommendations.

    • @abhishekkhanchi9105
      @abhishekkhanchi9105 7 лет назад

      Nice

  • @KayathriDevprasad
    @KayathriDevprasad 6 лет назад

    is it possible to apply recommender systems to Intrusion Detection Algorithms?

    • @YEESJAY
      @YEESJAY 4 года назад

      no its not possible

    • @yashsvidixit7169
      @yashsvidixit7169 3 года назад

      anything is possible if you are brave enough.

  • @lochanathambeliyagoda5065
    @lochanathambeliyagoda5065 4 года назад +1

    Lol i saw this on my reccomandation

  • @tubex1300
    @tubex1300 6 лет назад

    Hi Sir
    Will you provide the sample code of the video about?
    Thanks

  • @rikhsan
    @rikhsan 7 лет назад

    it helps. thanks

  • @rabnawazbhanbhrobhanbhro8509
    @rabnawazbhanbhrobhanbhro8509 8 лет назад +1

    what is the cross domain recommendations please explain it

  • @jackvu.hustle
    @jackvu.hustle 3 года назад

    Jack Vu is here.

  • @hamlinhamlinmcgill630
    @hamlinhamlinmcgill630 8 лет назад +2

    Next week i have my exam based on recommender systems, hope i will pass...

  • @YEESJAY
    @YEESJAY 4 года назад

    i came from clevered.com pre class video

    • @YEESJAY
      @YEESJAY 4 года назад

      Really nice i also came

    • @YEESJAY
      @YEESJAY 4 года назад

      @zeyrox you gotta be kidding me nah?

    • @YEESJAY
      @YEESJAY 4 года назад

      no i am not lol

    • @YEESJAY
      @YEESJAY 4 года назад

      ohhh ok KOKO MO MUJEH BI DO

    • @YEESJAY
      @YEESJAY 4 года назад

      SAME BOI

  • @mahmudhossainshanto7227
    @mahmudhossainshanto7227 7 лет назад

    :D