Frequency Response Descriptions for LTI Systems

Поделиться
HTML-код
  • Опубликовано: 25 дек 2024

Комментарии • 15

  • @mahakhan9762
    @mahakhan9762 4 года назад +5

    this was really helpful for my signals midterm, thank you

  • @vleeseter111
    @vleeseter111 4 года назад

    can someone help me with this exercise?
    The simplest LTI processor which approximates a digital differentiator has the difference equation:
    y[n]=x[n]-x[n-1]
    A less-widely used alternative is to estimate the central difference, using the equation:
    y[n] : 0.5[x[n] - x[[n-2]]
    Sketch the magnitude responses of the two aPProximations on the same diagram, over tñe range 0 < omgea < pi. Contrast their performance with that of an ideãl differentiator. By how many dB is each resPonse lower than that of the ideal differentiator at the frequency omega = 0.2pi?

  • @faizakhazma5122
    @faizakhazma5122 5 лет назад +2

    please question :
    what is it Frequency Response x(t) = e^−|t| ???

  • @sepm7356
    @sepm7356 5 лет назад

    hey sir, at around 5:30-5:50. how did you get the ω/2 on the frequency response? is it because there's only 2 terms? 3 terms would be ω/3? etc..? thanks

    • @nelsonfu8390
      @nelsonfu8390 4 года назад +3

      factor out exp(-j*omega/2) from both terms; this gives:
      RHS = exp(-j*omega/2) {1/2*exp(j*omega/2) + 1/2*exp(-j*omega/2)}
      we can rearrange Euler's formula to find that:
      cos(theta) = 1/2 * (exp(j*theta)+exp(-j*theta))
      and so the right hand side is:
      RHS = exp(-j*omega/2) {cos(omega/2)}
      as shown in the video :)

  • @MrBezzo0
    @MrBezzo0 11 лет назад +1

    Really useful and clearly explained, thanks!

  • @ΓάκηςΓεώργιος
    @ΓάκηςΓεώργιος 6 лет назад

    Can i use fourier series to find the H?

  • @wadeburns1233
    @wadeburns1233 6 лет назад

    You make some great videos. Thank you.

  • @nimashdilanka4906
    @nimashdilanka4906 9 лет назад +2

    Thank you sir.It was really helpfull.

  • @somasekharsuryadevara3484
    @somasekharsuryadevara3484 8 лет назад

    perfect and precise.
    Thank you

  • @ajlu5955
    @ajlu5955 10 лет назад

    Thanks man, it is really useful!!

  • @khukhaa5711
    @khukhaa5711 9 лет назад +1

    thank you

  • @muniraalali2784
    @muniraalali2784 8 лет назад

    Thank You !

  • @dogamertaydogan2803
    @dogamertaydogan2803 7 лет назад

    Thank you very much...

  • @bhuvi441
    @bhuvi441 10 лет назад

    Really useful thank you sir ! :)