8: Eigenvalue Method for Systems - Dissecting Differential Equations

Поделиться
HTML-код
  • Опубликовано: 18 ноя 2024

Комментарии • 71

  • @ellen128
    @ellen128 2 года назад +51

    Fully understand it now. Math shouldn't be about memorizing formulas. It should be about connecting the dots, observing patterns, and summarizing patterns into shortcuts called formulas, and enjoying the thinking that goes into that process.

  • @blackpenredpen
    @blackpenredpen 5 лет назад +187

    Believe it or not, I have forgotten this method! 😆

    • @ayitinya
      @ayitinya 2 года назад +9

      Unbelievable for someone like you

    • @motherisape
      @motherisape 2 года назад

      I know right

    • @matthewsamson927
      @matthewsamson927 Год назад +1

      Ah he's human😂😂

    • @Mathologix
      @Mathologix 8 месяцев назад +1

      I was about to ask you to make video on this topic but I found your comment here..😂

  • @santiagoarce5672
    @santiagoarce5672 4 года назад +34

    You can really tell that there's a lot of thought put into these videos about what might be the best way of explaining something. I actually find your way of explaining stuff really helpful.

  • @RedSarGaming
    @RedSarGaming 2 года назад +6

    What a great video! Short and explains everything clearly. I cannot thank you enough my guy!

  • @BuddyNovinski
    @BuddyNovinski 2 года назад +3

    Having taken both differential equations and linear algebra a long time ago, I can see the link between the Wronskian and vectors. How I wish this young man had been my professor (in his previous life). We have the advantage of the internet, so it's much easier to learn this stuff.

  • @IntegralMoon
    @IntegralMoon 2 года назад +2

    I found myself confused by MIT OCWs explanation, but this cleared it right up. Lovely work

  • @elischrag8436
    @elischrag8436 Год назад +2

    this was super helpful! Made the connection between eigenvalue/vector problems and solving differential equations much more clear.

  • @drseagull
    @drseagull 2 года назад +1

    what a god, you summarised a 30 min lecture in under 10 mins

  • @dulosalfred7522
    @dulosalfred7522 2 года назад +2

    This is so informative. Thank you for a comprehensive explanation.

  • @tristianity8529
    @tristianity8529 6 месяцев назад

    this is exactly the video i was in need off. thank you for a clear and consise explination!

  • @chigbuchiamaka4852
    @chigbuchiamaka4852 Год назад

    This is the only video I have watched explaining the concept behind solving system of equations 😩. Thank you Sir

  • @jonnydobandliamried8094
    @jonnydobandliamried8094 3 месяца назад

    That was really clear. Good stuff.

  • @VietnamSteven
    @VietnamSteven 2 года назад +1

    This explanation is fantastic!!

  • @calebjlee2685
    @calebjlee2685 11 месяцев назад

    Watching the eigenvalue formula show up was the the craziest cameo

  • @lavatasche2806
    @lavatasche2806 2 года назад +1

    Insanly well explained. Thank you

  • @paliganguly7834
    @paliganguly7834 Год назад

    It is really very helpful video for me, I am so impressed by your way to solution.

  • @Kallum
    @Kallum 3 года назад +3

    This helps me so much, i have a test about linear algebra next week about eigenvalues and systems of diff. Equations, thanks a bunch

  • @troyhernandez7277
    @troyhernandez7277 5 лет назад +6

    Man, I forgot my differential equations classes. Very cool method.

  • @dbgsdc3913
    @dbgsdc3913 Год назад

    Sir , I really loveu.Hope u will contribute in mathematics in a large way,

  • @realking4918
    @realking4918 3 года назад +3

    EXCELLENT VIDEO

  • @pontus_qwerty
    @pontus_qwerty 2 года назад

    Exactly what I was looking for. 👏

  • @MEBTabishKazmi
    @MEBTabishKazmi 9 месяцев назад

    Bro has the best handwriting ever

  • @ericyoerg4404
    @ericyoerg4404 3 года назад +2

    This is really good. Just about to take my differential equations matrix methods portion test and this helped a lot with explaining the why and how. Thanks!

  • @muwongeevanspaul9166
    @muwongeevanspaul9166 3 года назад +1

    Whattttttt....you guy, u are really sweet in your maths. U are truly so good. I like your personality and the way to pause on the board and write on it. I have fully understood the concept....thanks so much.

  • @shadowbane7401
    @shadowbane7401 3 года назад +1

    it is most definitely E I G E N V A LU E T I M E

  • @blblbl2178
    @blblbl2178 3 года назад +2

    Amazing and clear explanation! Thank you.

  • @tgeofrey
    @tgeofrey 2 года назад +1

    Thank you very Much

  • @mlfacts7973
    @mlfacts7973 Год назад

    Great video , thank you

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 года назад +1

    thank you so much

  • @duydangdroid
    @duydangdroid 9 месяцев назад

    if my professor ever did this, i'd say "whoa... an easy day"

  • @sriharsharevu4316
    @sriharsharevu4316 2 года назад +1

    Loved it.

  • @lukaskrause6022
    @lukaskrause6022 3 года назад +1

    Does the superposition principle only work for homogeneous differential equations?

    • @MuPrimeMath
      @MuPrimeMath  3 года назад +2

      Yes. If we add two solutions to a nonhomogeneous differential equation, the sum will not be a solution. For the nonhomogeneous case, we first find a particular solution, then add the general solution to the corresponding homogeneous equation!

    • @lukaskrause6022
      @lukaskrause6022 3 года назад +1

      @@MuPrimeMath ah right. So it’s the same general solution principle thing as for differential equations that aren’t systems

  • @mouadjadil4551
    @mouadjadil4551 3 года назад +2

    is there any more simplification than this?? hats off bro

    • @carultch
      @carultch Год назад

      Yes. To find the eigenvalues, you can use lambda = m +/- sqrt(m^2 - p), to more directly find them. This only works for a 2x2 matrix, and unfortunately no such equivalent trick works for a 3x3 or anything beyond.
      The m is the mean of the two diagonal entries along the down-right diagonal.
      The p is the determinant, which is the product of the two eigenvalues.
      So for us:
      m = 1.5
      p = 2*1 - 3*4 = -10
      1.5 +/- sqrt(1.5^2 - (-10)) = 5 and -2

  • @じばにゃん-w7y
    @じばにゃん-w7y 3 года назад +1

    凄いわかりやすかった。ありがとうございました。

  • @FelipeHenrique-yq3bu
    @FelipeHenrique-yq3bu 5 месяцев назад

    I got the eigenvector associated to the eigenvalue -2 equal to (1, -4/3), is this okay?

    • @MuPrimeMath
      @MuPrimeMath  5 месяцев назад

      Yes. Any scalar multiple of an eigenvector is also an eigenvector with the same eigenvalue.

  • @rodioniskhakov905
    @rodioniskhakov905 6 месяцев назад

    3:48 I don't understand why do you say that x' = e^(rt) but not x' = e^(At). Why r = A? Or rather, why e*I = A?

  • @wryanihad
    @wryanihad 9 месяцев назад

    What's the name of this techniq?

  • @user21121
    @user21121 3 года назад +1

    Great explanation!

  • @tonk6812
    @tonk6812 5 лет назад +1

    Hi...I want u to add a video for solving system of diiferntial eqns hving complex roots by using matrix exponential form....

    • @MuPrimeMath
      @MuPrimeMath  5 лет назад +2

      There will be a video where I solve a system with complex roots soon!

    • @tonk6812
      @tonk6812 5 лет назад +1

      @@MuPrimeMath ...keep on going...👍👍👍

  • @bigdaddie2273
    @bigdaddie2273 4 года назад +1

    Thanks man

  • @mohamedmouh3949
    @mohamedmouh3949 2 года назад

    thank you

  • @arcwand
    @arcwand Год назад

    i love you thank you so much

  • @aijazdar7824
    @aijazdar7824 2 месяца назад

    But 'r' is actually 'A' SO BOTH ARE SAME, HOW U ARRIVED EIGEN VALUE EQUATION

  • @TopCuber
    @TopCuber 4 года назад +3

    Couldn't you just Laplace transform both equations at the start and a get a regular system of equations?

    • @MuPrimeMath
      @MuPrimeMath  4 года назад +3

      Yes, that's another method for solving systems!

    • @muwongeevanspaul9166
      @muwongeevanspaul9166 3 года назад +1

      He specified the method under use

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 3 года назад +3

      Both are good, but the reason this can be more powerful is that computers can perform vector math easily, e.g. Matlab and that can be run on superclusters, graphics cards, or specialized processors like ASICs. Solving using Laplace can be done on a computer too, but it's more costly on CPU cycles and works less often especially for complicated problems.

  • @ZackSussmanMusic
    @ZackSussmanMusic 5 лет назад +2

    awesome!!

  • @motherisape
    @motherisape 2 года назад

    wow sir WOOOOW !

  • @desmondhutchinson6095
    @desmondhutchinson6095 5 лет назад +2

    interesting...

  • @wduandy
    @wduandy 5 лет назад +1

    Nice!

  • @tonk6812
    @tonk6812 5 лет назад +1

    👍👍👍👍...nice way...

  • @izu0506
    @izu0506 Год назад

    It will take me a year to connect the dots😂🔫

  • @dulosalfred7522
    @dulosalfred7522 2 года назад

    ❤️❤️❤️❤️❤️❤️❤️❤️

  • @arushorya4597
    @arushorya4597 Год назад

    gas vid

  • @holyshit922
    @holyshit922 Год назад +1

    In russian textbook i found following method
    x' = 2x + 3y
    y' = 4x + y
    x' = 2x + 3y
    ky' = 4kx + ky
    x' + ky' = (2+4k)x + (3+k)y
    x' + ky' = (2+4k)(x+(3+k)/(2+4k)y)
    (3+k)/(2+4k) = k
    3 + k = k(2 + 4k)
    3 + k = 2k + 4k^2
    4k^2 + k - 3 = 0
    (4k - 3)(k + 1) = 0
    x' - y' = -2x +2y
    d(x - y)/dt = -2(x-y)
    d(x - y)/(x-y) = -2
    ln(x - y) = -2t+ln(C_{1})
    x - y = C_{1}exp(-2t)
    x' + 3/4y' = 5x + 15/4y
    d(x + 3/4y)/dt = 5(x+3/4y)
    d(x + 3/4y)/(x+3/4y) = 5dt
    ln(x + 3/4y) = 5t + ln(C_{2})
    x + 3/4y = C_{2}exp(5t)
    x - y = C_{1}exp(-2t)
    x + 3/4y = C_{2}exp(5t)
    3/4x - 3/4y = 3/4C_{1}exp(-2t)
    x + 3/4y = C_{2}exp(5t)
    7/4x = 3/4C_{1}exp(-2t) + C_{2}exp(5t)
    x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    x - y = C_{1}exp(-2t)
    -(x + 3/4y = C_{2}exp(5t))
    -7/4y = C_{1}exp(-2t) - C_{2}exp(5t)
    y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    To generalize it for more equations we need k1,k2...,k_{n-1}
    but problems may appear for repeated eigenvalues
    I dont speak russian (When i went to school it hadn't been taught. My mother didnt want to teach me)
    but this approach probably has something to do with eigenvalues and eigenvectors

  • @ferhatkorkmaz11
    @ferhatkorkmaz11 2 года назад +1

    great explanation!

  • @chewbecca9443
    @chewbecca9443 2 года назад

    thanks man