Best method to find area of triangle CFG? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 29 янв 2025

Комментарии • 7

  • @Sahinaz-t6d
    @Sahinaz-t6d 13 дней назад

    Thankyou sir

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 13 дней назад

    Using Cachi's theorem for triangles ABC and BEG we find cos(a)=(AB²+BC²-AC²)/(2*AB*BC)=(BE²+BG²-EG²)/(2*BE*BG) then let AB=x. Then BC²=x²+16, BE²=x²+144, BG²=x²+576, so we get an equation with one unknown x. After simplification, we get an equivalent equation x⁴-72x²-10368=0, i.e. (x²+72)(x²-144)=0. Therefore, x=12, and from this, BG=12√5. Since the triangles ABG and CFG are similar and their similarity ratio is equal to CG,/BG=5/(3√5), the area of triangle CFG is (12*24/2)*(5/3√5)²=80.

  • @bouazabachir4286
    @bouazabachir4286 14 дней назад

    Thanks a lot professor I follow you from Algeria

  • @murdock5537
    @murdock5537 13 дней назад

    φ = 30° → sin⁡(3φ) = 1; ∆ ABG → AB = a; AG = AC + CE + EG = 4 + 8 + 12
    BG = BF + GF → sin⁡(CFB) = 1 = sin(BAG) ;CF = t; GBE = CBA = α; EBC = β; AGB = δ
    BC = x; BE = y; BG = z → x = √(a^2 + 16); y = √(a^2 + 144); z = √(a^2 + 576)
    (1/2)sin⁡(α)ax = (1/3)(1/2)sin⁡(α)xy → ax = yz/3 →
    a√(a^2 + 16) = (1/3)√(a^2 + 144)√(a^2 + 576) → a = 12 →
    sin⁡(δ) = √5/5 = t/20 → t = 4√5 → FG = 8√5 → area ∆ CGF = 80
    or: CF = t; AC = AE/3 → arctan⁡(1) - arctan⁡(1/3) = arctan⁡(1/2) = tan⁡(β) →
    tan⁡(α) = 1/3 → a = 12 → AGB = δ → sin⁡(δ) = √5/5 = t/20 → t = 4√5 →
    FG = 2t → area ∆ CGF = t^2 = 80 → x = 4√10 → y = 12√2 → z = 12√5

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 8 дней назад

    (4)^2(8)^2(12)^2={16+64144}=224ABCDEFG/180°=1.44ABCDEFG 1.2^2^2^2 1.1^1^1^2 1^2 (ABCDEFG ➖ 2ABCDEFG+1).

  • @jimlocke9320
    @jimlocke9320 14 дней назад

    Solution by trigonometry: All lengths are in km and areas in km².