Mirror symmetry and cluster algebras - Paul Hacking & Sean Keel - ICM2018
HTML-код
- Опубликовано: 26 дек 2024
- Algebraic and Complex Geometry
Invited Lecture 4.15
Mirror symmetry and cluster algebras
Paul Hacking & Sean Keel
Abstract: We explain our proof, joint with Mark Gross and Maxim Kontsevich, of conjectures of Fomin-Zelevinsky and Fock-Goncharov on canonical bases of cluster algebras. We interpret a cluster algebra as the ring of global functions on a non-compact Calabi-Yau variety obtained from a toric variety by a blow up construction. We describe a canonical basis of a cluster algebra determined by tropical counts of holomorphic discs on the mirror variety, using the algebraic approach to the Strominger-Yau-Zaslow conjecture due to Gross and Siebert.
© International Congress of Mathematicians - ICM
www.icm2018.org
Os direitos sobre todo o material deste canal pertencem ao Instituto de Matemática Pura e Aplicada, sendo vedada a utilização total ou parcial do conteúdo sem autorização prévia e por escrito do referido titular, salvo nas hipóteses previstas na legislação vigente.
The rights over all the material in this channel belong to the Instituto de Matemática Pura e Aplicada, and it is forbidden to use all or part of it without prior written authorization from the above mentioned holder, except in the cases prescribed in the current legislation.