Golden Triangle | Calculate area of the triangle | (Important Math skills explained) |

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 63

  • @raya.pawley3563
    @raya.pawley3563 Год назад +4

    Thank you

    • @PreMath
      @PreMath  Год назад +1

      You're welcome
      Thank you! Cheers! ❤️

  • @prbmax
    @prbmax Год назад +4

    Where were the math teachers like this when I was in school?

  • @mathukuttyvarghese2738
    @mathukuttyvarghese2738 Год назад +2

    Step by step explanation .understandable to everybody. All best wishes.

  • @toninhorosa4849
    @toninhorosa4849 7 месяцев назад

    Great teacher!
    👏👏👏👏👏

  • @marcgriselhubert3915
    @marcgriselhubert3915 Год назад +6

    Something completely different: Let's use an adapted orthonormal.
    A(0;0) C(0;8) and O(6;2) The cercle has for equation (x-6)^2 + (y-2)^2 = 4, or: x^2 + y^2 -12x -4y +36 = 0
    A straigt line coming from C has for equation y - 8 = mx (m parameter), or : y = mx +8.
    At the intersection of the circle and the straight line we have: x^2 + (mx+8)^2 -12x -4 (mx+8) +36 = 0
    Or : (m^2 +1) x^2 + 12 (m-1) x + 68 = 0.
    The straight line is tangent to the circle when the intersection is two identical points, and we have that when the former equation has ons double solution, that means when the second degree equation has its discriminant equals to 0.
    This discriminant (reduct) is 36 (m-1)^2 - 68 (m^2 +1), or: -32 m^2 -72m -32, or -8 (4 m^2 +9m +4)
    The values of the parameter m giving the tangency are the solutions of the equation 4 m^2 +9m +4 = 0.
    We calculate the discriminant of this new second degree equation, it is 9^2 - 4.4.4 = 81 - 64 = 17.
    So the values of m giving the tangency are m = (-9 - sqrt(17))/8 or m = (-9+ sqrt(17))/8. We choose the first one corresponding to the given drawing. So the straight line which is tangent to the circle that we are interested in has for equation y = (-9 - sqrt(17))/8) x + 8.
    Its intersection with (AB) gives y = 0 and x = 64 / (9 + sqrt(17)) = 9 - sqrt (17).
    So the unknown dimension of the triangle is (1/2) (9 - sqrt (17)) (8) = 4 (9 -sqrt (17)).
    (Sorry for bad english)

    • @robertlynch7520
      @robertlynch7520 Год назад

      I tried doing it the same way, but it got too hairy. Thank you though ... for showing it works.

  • @HappyFamilyOnline
    @HappyFamilyOnline Год назад +1

    Very well explained 👍
    Thanks for sharing 😊

  • @ranvirs07
    @ranvirs07 Месяц назад

    very good

  • @jimlocke9320
    @jimlocke9320 Год назад

    At 6:05, we can apply the tangent sum of angles formula tan(α+ß) = (tan(α) + tan(ß))/(1 - (tan(α)tan(ß)) to find tan(α) = AB/8 and compute AB. Let α =

  • @Jonasz314
    @Jonasz314 Год назад

    you can derive the length CO much faster, by observing that O is on the CP diagonal (any circle tangent to two sides of a square will have its center on a diagonal). Since we have trivially OP = 2.sqrt(2) and CP = 8.sqrt(2), we can see that CO = 6.sqrt(2).

  • @Imran-tc6sn
    @Imran-tc6sn 8 месяцев назад

    Thankyou sir

  • @jamestalbott4499
    @jamestalbott4499 10 месяцев назад

    Thank you!

  • @sachinwellalage4990
    @sachinwellalage4990 Год назад +1

    Very good . 👍

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers!❤️

  • @soli9mana-soli4953
    @soli9mana-soli4953 Год назад

    Very nice! 👌

  • @MrPaulc222
    @MrPaulc222 7 месяцев назад

    To guard against a spurious value, start with a rough estimate: if the golden triangle was ACE its area would be (8*6)/2 = 24. However, it is ACB which is (8 by approx 4.8)/2 = 19.2, so the eventual answer should be in this region.
    COD is a right triangle. CO is 8*sqrt(2) - 2*sqrt(2) = 6*sqrt(2).
    (6*sqrt(2))^2 - 2^2 = 68, so CD is sqrt(68) or 2*sqrt(17).
    BD = BE = x
    (Although the minutiae of how I calculated differed from yours, I got there in the end. e.g. I got the 6*sqrt(2) by 8*sqrt(2) - 2* sqrt(2) which led me to 2*sqrt(17) etc.......

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Год назад +1

    👍🌹very nice👌👌

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! ❤️

  • @fhfyhfyf
    @fhfyhfyf Год назад

    Geniuss ❤

  • @mathbynisharsir5586
    @mathbynisharsir5586 Год назад

    Awesome video sir 👍

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! ❤️

  • @ybodoN
    @ybodoN Год назад

    CP = 8√2 and OP = 2√2 ⇒ CO = 6√2. And since DO = 2 ⇒ sin α = √2 / 6 where α is ∠DCO.
    Then, since ∠ACO = 45° ⇒ sin β = (√17 − 1) / 6 where β = ∠ACB ⇒ tan β = (9 − √17) / 8.
    So, AB = 8 tan β = (9 − √17) ⇒ the area of the golden triangle is 4 (9 − √17) square units.

    • @hcgreier6037
      @hcgreier6037 Год назад

      Hi! From where do you get sin β = (√17 − 1) / 6 ?

    • @ybodoN
      @ybodoN Год назад

      @@hcgreier6037 by the angle difference identity: sin (45° − α) = sin 45° cos α − cos 45° sin α ⇒ (√2 / 2)(√(17 / 18)) − (√2 / 2)(√2 / 6) = (√17 − 1) / 6

    • @hcgreier6037
      @hcgreier6037 Год назад

      @@ybodoN Well OK, so you also have cos α =√(1-sin² α), which then gives √(1-sin² α) = √[1-(√2 /6)²] = √[1-(2/36)] = √[1-(1/18)] = √(17/18)
      which is a bit hard to "see" *together with the trig identity* in a one-liner 😅

    • @ybodoN
      @ybodoN Год назад

      ​@@hcgreier6037 Exact! Then in the same line: tan β = sin β / √(1 − sin² β) ⇒ ((√17 − 1) / 6) / √(1 − (√17 − 1)²) = (9 − √17) / 8 😉

    • @hcgreier6037
      @hcgreier6037 Год назад

      @@ybodoNOk then, are you getting my point? I presume this is a *teaching* channel, so it makes no sense to throw in a one-liner which hardly anyone can follow, as for to explain this one-liner it takes 2 more lines of explanation where it comes from ... 🤔

  • @josedavis4242
    @josedavis4242 Год назад +1

    Another solution through trigonometry.
    Let AB = p, BE = q
    Since EP =2, p+q = 6
    Connect points O,B so that OB is the intersecting line of ang DOE.( DB, BE are tangents formed at circle to radii OD, OE respectively)
    Let ang DOB= ang BOE = x
    Since ang ODB and OEB are perpendicular, angle DBE = 180-2x
    Hence ang ABC = 2x
    tan 2x= 2tanx/(1-tan^2x)
    tan ABC = tan 2x = 8/p
    tan BOE= tan x = q/2
    8/p = (2* q/2) / (1 - q^2/4)
    = 4q/(4-q^2)
    Simplifying,
    p= (8-2q^2) / q
    Substitute this value in p+q = 6,
    q^2 + 6q -8 = 0
    we get q = 1.123
    p = 6- 1.123 = 4.877
    So are of golden triangle = 1/2 * 8* 4.877
    = 19.5 unit squared.

  • @ybodoN
    @ybodoN Год назад

    Generalized: the area of the golden triangle is _½ s² tan(¼ π − sin⁻¹ (r / ((s − r) √2)))_ where _s_ is the side of the square and _r_ is the radius of the circle.

  • @kevinmorgan2317
    @kevinmorgan2317 Год назад

    I got tanDCO = √17/17 so angleACB = 45 - arctan√17/17. You can then easily find AB = 8tan(45 - arctan√17/17) and then the required area = 36 - 4√17. But I prefer your method!

  • @murdock5537
    @murdock5537 Год назад +1

    Nice! φ = 30°; CP = 8√2; OP = 2√2 → CO = 6√2 → CD = 2√17 → sin⁡(CDO) = 1
    PCA = 3φ/2 → sin⁡(3φ/2) = cos⁡(3φ/2) = √2/2; PCB = θ → sin⁡(θ) = √2/6 → cos⁡(θ) = √34/6 →
    BCA = δ → cos⁡(δ) = cos⁡(3φ/2)cos⁡(θ) + sin⁡(3φ/2)sin⁡(θ) = (√17 + 1)/6 = 8/CB → CB = m = 3(√17 - 1) →
    AB = √(m^2 - 64) = (√2)(√(49 - 9√17)) → 4AB = (4√2)(√(49 - 9√17)) = 4(9 - √17) ↔ 9 - √17 = √(98 - 18√17)

  • @shantanudhiman8194
    @shantanudhiman8194 Год назад

    I was able to solve it mentally so, it's an easy problem.

  • @ayijpob
    @ayijpob Год назад

    i use 8/(6-x)=2/x to get the x
    base on tan 90 for both triangle, the answer is 17,2 in my case

  • @morveuxetmorveux
    @morveuxetmorveux Год назад

    sin alfa=OD/OC alfa=13,633°
    OC=6 sqrt2 ,OD=2
    beta=45°-alfa=31,367°
    AB=AC tang beta
    aire ABC =0,5 AC²tang beta =19,508

  • @prossvay8744
    @prossvay8744 Год назад

    BE=x
    AB=8-x-2=6-x
    connect C & P
    OP=2√2
    CP^2=8^2+8^2
    CP=8√2
    OC=8√2-2√2=6√2
    CD=√{6√2)^2-2^2=2√17
    BC=x+2√17
    8^2+(6-x)^2=(x+2√17)^2
    64+36-12x+x^2=x^2+68+4x√17
    x=√17-3
    AB=6-√17+3=9-√17
    Area of the golden triangle=1/2(8)(9-√17)=36-4√17=19.51square units .❤❤❤

  • @Justonlymusicchill
    @Justonlymusicchill Год назад

    Golden rule tanks

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    Posto t base del triangolo Yellow,risulta √(8^2+t^2)=√(36+36-2^2)+(6-t)...t=9-√17..A=8t/2=4t=36-4√17

  • @pralhadraochavan5179
    @pralhadraochavan5179 Год назад

    Good morning sir

  • @johnplong3644
    @johnplong3644 Год назад +1

    There is a hell of a lot of Algebra in this program
    I definitely need to do more practice problems in Algebra 2 I have the concept of Geometry and Trigonometry I had no problem following that.I need to to the Algebra I am definitely rusty Hey give me a break it has been Around 50 years since I did this I don’t remember getting problems like this in Algebra 2 In High School But I did get this in college.I took a glass in College geometry You had to have College Algebra and College level Trigonometry to take the class They as lo recommend you have a B grade in both classes.

  • @ВерцинГеториг-ч5ь

    Невероятно сложно . Продляем ОF до пересечения СВ , из точки В опускаем перпендикуляр на продление ОF , из подобия треугольников (по двум углам) ДВ=ВЕ (принимаем АВ=Х) и теоремы ПИФАГОРА , ВЕ=(\|64+Х*2)/4 - Х/4 . АР= АВ+ВЕ+ЕР , 8=Х+(\|64+Х*2)/4 - Х/4 +2 .После преобразования - Х*2 - 18Х + 64 = 0 , Х1 = 9+\|17- не удовлетворяет условиям задачи , Х2 = 9 - \|17 , S(area)= 1/2АВ х АС = 1/2 х 8 х (9 - \|17) = 4 х (9 - \|17) .

  • @globalcitizen995
    @globalcitizen995 Год назад

    How do we know that the length DB = BE ?

    • @keithwood6459
      @keithwood6459 10 месяцев назад

      Because of the two tangent theorem. If you have a point outside a circle and you draw tangent lines to the same circle, those lines are always the same length. He mentioned it.

  • @gelbkehlchen
    @gelbkehlchen Год назад

    Solution:
    Pythagoras in the right triangle CDO:
    CD = √ [CO²-DO²] = √ [2*(8-2)²-2²] = √ [72-4] = √ 68
    BD = BE = x = Equal tangent sections.
    Pythagoras in right triangle ABC:
    CB² = AB²+AC² ⟹
    (CD+x)² = (AE-x)²+8² ⟹
    (√ 68+x)² = (6-x)²+8² ⟹
    68+2*√68*x+x² = 36-12x+x²+64 |-68-x²+12x ⟹
    (2*√68+12)*x = 32 |/(2*√68+12) ⟹
    x = 32/(2*√68+12) ⟹
    Area of the golden triangle = AB*AC/2 = (AE-x)*AC/2 = (6-32/(2*√68+12))*8/2
    = (6*(2*√68+12)-32)/(2*√68+12)*4
    = (12*√68+72-32)/(2*√68+12)*4
    = (24*√17+40)/(4*√17+12)*4
    = (24*√17+40)/(√17+3) ≈ 19.5076

  • @FAS1948
    @FAS1948 Год назад

    I depended on maths all my working life, but now I'm retired I can forget about it.

    • @keithwood6459
      @keithwood6459 10 месяцев назад

      Yet here you are! Something must have drawn you back!

  • @inse001
    @inse001 Год назад

    The area of the Golden Triangle is Thailand, Laos and Myanmar.
    Is this an accurate answer?

  • @andreasproteus1465
    @andreasproteus1465 Год назад

    It is easier to find x from the similar triangles ABC and OEB..

    • @ybodoN
      @ybodoN Год назад +1

      But the triangles ABC and OEB are not similar 🤔

  • @phungpham1725
    @phungpham1725 Год назад

    1/ The center O must be on the diagonal CP. We have CP=8 sqrt 2
    By using the tangent theorem, we have sq CD = (8 sqrt2 - 2- 2 sqrt2) (8sqrt 2- (2sqrt2-2)= (6sqrt 2 -2) (6sqrt 2 +2) =72-4=68
    CD= 2 sqrt 17
    2/ Let alpha and beta be the angle OCD and DCA respectively. We have tan alpha = 1/ sqrt 0f 17 and beta= 45- alpha.
    so tan beta =( tan 45 -tan alpha)/ ( 1+ tan 45 . tan alpha) --------> tan beta =(sqrt17 - 1)/(sqrt17+1) = 0.6096
    -------> AB= 8x 0.6096 -------> Area of the golden triangle= 1/2 x8 x 0.6096 x8= 32x 0.6096= 19.5072 sq units

  • @robertlynch7520
    @robertlynch7520 Год назад

    After all that (and not 'cheαting to see you you did it'), I was left with
    8² + (6 - 𝒙)² = (2√17 + 𝒙)²
    Which through some rearrangement becomes
    𝒙 = (100 - 68) / (4√17 + 12)
    𝒙 = 1.123106
    This then 'drives home' into the more obvious gold triangle area equation
    area = ½ base • height
    area = ½ • (6 - 𝒙) • (8)
    area = ½ (6 - 1.123106) × 8
    area = 19.5076 or about 19.51
    Which is the same as calculated in the video.
    Funny how that works out.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @wackojacko3962
    @wackojacko3962 Год назад +1

    😉

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! ❤️

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip Год назад

    Daily aapki video dekhti hun magar aap hamari video Nahin dekhte

  • @sagarmusar5135
    @sagarmusar5135 Год назад +2

    👌👌

    • @PreMath
      @PreMath  Год назад

      Thank you! Cheers! ❤️

  • @htw9594
    @htw9594 Год назад

    >16.

  • @montynorth3009
    @montynorth3009 Год назад

    In triangle TCO..
    CO^2 = 6^2 + 6^2 = 72.
    CO = sq.rt. of 72.
    Also, angle OCT = 45 degrees.
    In triangle DCO..
    Sin DCO = 2 / sq.rt. of 72.
    Sin DCO = 0.2357.
    Angle DCO = 13.633 degrees.
    Angle ACB = 90 - 13.633 - 45.
    Angle ACB = 31.367 degrees.
    Tan 31.367 = AB / 8.
    AB = 8 tan 31.367.
    Area of golden triangle = 1/2 x 8 x 8 x tan 31.367.
    32 tan 31.367.
    19.51.

  • @keithwood6459
    @keithwood6459 10 месяцев назад

    When I got to CO^2 it made me nervous because CO2 is bad. So I stopped. I'm all about saving the planet.

  • @maestro2271
    @maestro2271 Год назад

    Just like everyone else ( MAKES NO SENSE ) numbers don’t compute in my head….sorry buddy it’s all so wrong

  • @RajeshJha-yu2qh
    @RajeshJha-yu2qh Месяц назад

    Kisko kis se jorte Ho jab Tak ye samajh nahi aata oos se pahle hi aage bhag jate Ho, esliye burbak Ho beta