a periodically recursive sequence.

Поделиться
HTML-код
  • Опубликовано: 10 фев 2025
  • 🌟Support the channel🌟
    Patreon: / michaelpennmath
    Channel Membership: / @michaelpennmath
    Merch: teespring.com/...
    My amazon shop: www.amazon.com...
    🟢 Discord: / discord
    🌟my other channels🌟
    mathmajor: / @mathmajor
    pennpav podcast: / @thepennpavpodcast7878
    🌟My Links🌟
    Personal Website: www.michael-pen...
    Instagram: / melp2718
    Twitter: / michaelpennmath
    Randolph College Math: www.randolphcol...
    Research Gate profile: www.researchga...
    Google Scholar profile: scholar.google...
    🌟How I make Thumbnails🌟
    Canva: partner.canva....
    Color Pallet: coolors.co/?re...
    🌟Suggest a problem🌟
    forms.gle/ea7P...

Комментарии • 45

  • @kokainum
    @kokainum Год назад +38

    How about defining c_n such that c_{n+1} = c_n + e^(i*n). Easy to get a formula because it's sequence of partial sums of geometric series and then you find a_n as imaginary part of c_n. Seems more intuitive and less tricky (no guessing).

  • @titassamanta6885
    @titassamanta6885 Год назад +36

    Can we use the follwoing method? a_(k+1)-a_k=sin(k). So a_(n+1)
    -a1= sin(1)+sin(2)+....+sin(n). Now we have a formula for the series on the lhs, which is sin(n/2)(sin((n+1)/2)÷sin(1/2)

    • @TheEternalVortex42
      @TheEternalVortex42 Год назад +3

      Yes, recursively defining a simple sum seems kinda pointless.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Год назад +2

      sin(n/2)(sin((n+1)/2)÷sin(1/2)? Where did you get that from?

    • @titassamanta6885
      @titassamanta6885 Год назад

      @@bjornfeuerbacher5514 Actually there is a formula for calculating the sums of the sines of angles in A.P. Theee are multiple ways to derive it.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Год назад

      @@titassamanta6885 What does A. P. mean?

    • @titassamanta6885
      @titassamanta6885 Год назад +2

      @@bjornfeuerbacher5514 arithmetic progression

  • @rogierbrussee3460
    @rogierbrussee3460 Год назад +5

    An alternative way to doing this Is and dealing with trigonometric functions, is to use complex exponentials to make things easier.
    Set q = e^i then sin(n) = Im(q^n) so we get a_{n+1} - a_{n} = sin(n) = Im(q^n). Now we can use that
    a_n = a_{n-1} + Im(q^{n -1})=
    = a_{n-2} + Im (q^{n -1} + q^{n-2})
    = a_0+ Im(q^0 + q^1 + .. + q^{n-1)) (by easy induction)
    = a_0 + Im((1 - q^{n})/(1 - q)) (summing a geometric sum)
    = a_0 + Im( (q^{-1/2} - q^{n -1/2})/(q^{- 1/2} - q^{1/2})) (dividing nominator and denominator by q^{1/2}.= e^{1/2i})
    = a_0 + Im( (2i)^{-1} (q^{-1/2} - q^{n -1/2})/((q^{- 1/2} - q^{1/2})/2i)) (dividing nom and denom by 2i )
    = a_0 - (1/2sin(1/2)) Re (q^{-1/2} - q^{n-1/2}) (using Im(iz) = - Re(z) and sin(x) = (q^x - q^{-x})/2i)
    = a_0 - 1/(2sin(1/2)) (cos(1/2) - cos(n-1/2))
    or if you prefer
    a_n = C - cos(n-1/2)/2sin(1/2) = C - (cos(n)cos(1/2) + sin(n)sin(1/2))/2sin(1/2) = C - cos(n)cotan(1/2)/2 -sin(n)/2

  • @SJ-ry6br
    @SJ-ry6br Год назад

    There are many approaches to this problem, and this one is new to me. Thanks!

  • @SlipperyTeeth
    @SlipperyTeeth Год назад +17

    Alternatively, take the discrete derivative of sin(x) and of cos(x). They will each yield something of the form Asin(x)+Bcos(x). Then match coefficients.

  • @kkanden
    @kkanden Год назад +2

    the fade-in at the start is a nice touch!

    • @kkanden
      @kkanden Год назад +1

      and the fade-out!

    • @BikeArea
      @BikeArea Год назад

      A backflip-in and a backflip-out would impress me much more than these veeeery basic fadings. 😉

  • @gat0tsu
    @gat0tsu Год назад

    thanks alot for making the video. your presentation is very good!

  • @papanujian7758
    @papanujian7758 Год назад

    Thankyou, sir

  • @wolfwerewolf4754
    @wolfwerewolf4754 Год назад +33

    How do we know there could be no other sequence that satisfies the original equation? Without such justification the solution looks incomplete...

    • @Noam_.Menashe
      @Noam_.Menashe Год назад +8

      There are infinitely many, as a_0 is left unknown.

    • @shohamsen8986
      @shohamsen8986 Год назад +21

      It's a linear recursion. It shouldn't be too hard to prove uniqueness of solution up to picking a_0. That's what the C does. If u can guess a solution then u are done.

    • @TheEternalVortex42
      @TheEternalVortex42 Год назад +35

      Proving uniquness is easy, say b_n is another solution that satisfies the same recurrence. Then a_{n+1} - b_{n+1} = a_n - b_n + sin(n) - sin(n). Thus a_{n+1} - b_n{n+1} = a_n - b_n, so we know a_n - b_n = C for all n. This proves that all solutions are unique up to a constant.

    • @shohamsen8986
      @shohamsen8986 Год назад +3

      @@TheEternalVortex42i was thinking more like given some seed a_0, if you plug it in, you will get a unique answer. If you construct the recursion relationship u wont get two answers cause the relationship is inherently single valued. There are no square roots type multivalued operations involved.

    • @CM63_France
      @CM63_France Год назад +2

      You can built an infinite number of solutions by taking different values of the constant C. And this constant is nothing but the general solution of the equation without a second member.

  • @davidmelville5675
    @davidmelville5675 Год назад

    That was off its chops!! Love it.

  • @ralvarezb78
    @ralvarezb78 Год назад +7

    this is often resolved using Z transform on signal processing

  • @insouciantFox
    @insouciantFox Год назад +2

    sin(1)/(2(cos1-1)) = -1/2 cot(1/2) so a(n) can be further simplified into
    a(n) = -1/2 csc (1/2)cos (n-1/2) +C
    which I think is much prettier.

  • @DrR0BERT
    @DrR0BERT Год назад +6

    The matrix is glitching around 3:45.

    • @rogerkearns8094
      @rogerkearns8094 Год назад +2

      Ah, thank you. I paused it just before that to come down and see if anyone else spotted anything wrong.

  • @msli4882
    @msli4882 Год назад

    The core of the problem is the summation of sequence of sin(n), and can be easily calculated from the summation of sequence of e^(i n)

  • @元兒醬
    @元兒醬 Год назад

    1-5-7-13-17-25-31-41-49............
    I've found it an interesting number series ,
    Do you mind introducing it ?

  • @19divide53
    @19divide53 Год назад +1

    Doe the method work if the RHS is replaced by sin(p(n)) where p is a polynomial?

  • @tomholroyd7519
    @tomholroyd7519 Год назад

    How about a_n+1 = a_n + random(-1, 1)
    The random part averages to 0
    like sin

  • @eduardomalacarne9024
    @eduardomalacarne9024 Год назад

    normally a would user complex equivalence and exponential function

  • @holyshit922
    @holyshit922 Год назад

    I would probably use generating function (ordinary generating function is enough , no need for exponential generating function)

  • @bjornfeuerbacher5514
    @bjornfeuerbacher5514 Год назад +2

    One could rewrite the coefficient of cos(n) a bit:
    2 cos(n) - 2 = -4 ( 1/2 - 1/2 cos(n) ) = -4 sin²(1/2), so the coefficient becomes -sin(1)/4sin²(1/2).

  • @Wielorybkek
    @Wielorybkek Год назад

    neat!

  • @stevenmellemans7215
    @stevenmellemans7215 Год назад +1

    This one looks a bit handwaved to me.

  • @theevermind
    @theevermind Год назад

    It seems odd to call it "solving" the sequence. Finding a general form of a sequence isn't "solving" IMO.

    • @soupisfornoobs4081
      @soupisfornoobs4081 Год назад

      Can you tell us what you think solving the sequence is? I genuinely don't know what you're referring to

  • @TaladrisKpop
    @TaladrisKpop Год назад

    The video only finds some solutions. I would be great to show there are no other solutions.
    It is not too hard: if a_{n+1}=a_n+f(n), then a_n = a_1 + \sum_{k=1}^{n-1} f(k) (proof by a simple induction).
    Here, the sum is easy to compute as f(k) = sin(k) = Im(e^{ik})