Dynamique du pendule simple

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 35

  • @Shadowster23
    @Shadowster23 3 года назад +15

    Les explications sont super claires et ça me sauve après avoir été dans la lune pendant les cours ^^'. Merci beaucoup !

  • @zaramohand8760
    @zaramohand8760 Месяц назад

    Magnifique merci, votre méthode d’explication accompagné de dessins est la meilleure, bonne continuation plein de réussite

  • @anotix3530
    @anotix3530 3 года назад +3

    Merci pour cette vidéo très bien schématisée !! Cependant s’attarder sur les autres petits détails m’aurait permis de comprendre l’entièreté du problème (le mini théorème de thalès notamment, pour placer le sinus …)
    Mise à part cela, un grand merci pour cette superbe explication !

  • @aminebarrahmoune7457
    @aminebarrahmoune7457 10 месяцев назад +1

    Masterclass la vidéo j'adore

  • @Gabrialla-cf1jn
    @Gabrialla-cf1jn 3 месяца назад

    Merci très explicite

  • @salmasaidi8440
    @salmasaidi8440 3 года назад +2

    Merci rof

  • @biosylvio29
    @biosylvio29 Год назад

    Thanks you 😊

  • @jooeeee
    @jooeeee Год назад

    J'ai une question, je retombe bien sur la force de rappel à savoir :
    Force de rappel = mg Sin(Thêta).
    Mais, je vois dans d'autres tutos, qu'elle devient négative, Force de rappel = - mg Sin(Thêta) en raison "de la position du pendule par rapport à l'axe de son point d'équilibre" (la verticale).
    Je ne comprends pas d'où sort mathématiquement ce résultat négatif.
    J'ai envie de l'implémenter en Javascript mais ce dernier point me laisse perplexe. J'aurais souhaité comprendre. Merci à vous.

    • @momobeb7361
      @momobeb7361 Год назад +1

      Je pense que c'est parce-que ce qui l'intéresse c'est de déterminer la fréquence et la période du pendule et que ça lui suffit de ne pas considérer le signe ni de l'angle ni de la force ni de l'élongation (sinon dans ce cas avec un theta positif vus comme il a placé son repère étant donné que thêta est positif dans le sens de l'axe perpendiculaire on aurait bien dû avoir -mgsin(thêta))

    • @deusxvagina4838
      @deusxvagina4838 Год назад

      ça dépend de l'orientation de l'angle

  • @elievermoesen7302
    @elievermoesen7302 2 года назад

    Quid des formules si les oscillations ne sont pas "petites" et à partir de quels critères / ordre de grandeur ?
    D'avance merci et félicitation pour la clarté.

    • @jdumas
      @jdumas  2 года назад +1

      L'approximation devient de plus en plus difficile à tenir si l'angle augmente de trop. On considère d'habitude un angle inférieur à 6°. Mais grosso modo, avec un angle inférieur à 20°, ça reste OK.
      Les maths pour des oscillations de plus grande amplitude sont plus complexes et ne font pas l'objet de mon cours.
      Pour plus d'infos :
      en.wikipedia.org/wiki/Pendulum_(mechanics)#/media/File:Pendulum_period.svg (pour l'effet de l'approximation).
      en.wikipedia.org/wiki/Pendulum_(mechanics)

  • @aidewoozworld8216
    @aidewoozworld8216 4 года назад +1

    Bonjour monsieur, comment je peux vous contacter?

    • @jdumas
      @jdumas  4 года назад

      Sur la page d'accueil de cette chaine -> l'onglet "about" -> for business inquiries -> view email address

  • @RsNutella
    @RsNutella Год назад

    Maintenant résout la dynamique d’un pendule triple avec une gravité oscillante entre g et -g avec une amplitude a, un nombre reel quelconque et sur un plan incliné ayant un angle d’ouverture \theta. Et ce de façon analytique

  • @hamzamounir8775
    @hamzamounir8775 2 года назад

    Comment l'accélération va être exprimer selon l'axe G , et merci

  • @abdellahoustani8936
    @abdellahoustani8936 4 года назад +1

    Mr je pense que vous avez fait une erreur
    On G//=-m.g.sin (o)
    Car on travail dans la partie négative de repère! !

    • @jdumas
      @jdumas  4 года назад +1

      Bonjour, en effet les coordonnées du vecteur G sont bien négatives sur l'axe G//. Cependant ici dans la fin de la vidéo, on parle en fait de la grandeur de la composante G//, qui est la force de rappel (donc on ne se préoccupe plus du signe).

  • @hajarboutahar9014
    @hajarboutahar9014 3 года назад

    S'il vous un vidéo sur l'expression littérale de poids du pendule

  • @nathanrongier3563
    @nathanrongier3563 8 дней назад

    c niveau term ça ??

  • @theotimenelisse6048
    @theotimenelisse6048 3 года назад

    merci

  • @mohamedprogrammer19
    @mohamedprogrammer19 2 года назад +1

    yom hahhaah nice

  • @bryanng5373
    @bryanng5373 4 года назад +1

    au fait Wmo(P)=Wmo(Px)+Wmo(Py)
    =Wmo(Px)
    =Px.MO
    =Px.l.o

  • @iamgroot3931
    @iamgroot3931 5 лет назад +3

    Nonnnnn pourquoi cest dans les RUclips suggestions maintenant? Javais un exam de la pendule pesante sinple torsion hier

    • @beoptimistic5853
      @beoptimistic5853 4 года назад

      https: //ruclips.net/video/VWVw9zh3fG8/видео.html👍👍👍👍👍👍👍

    • @nanajaemin
      @nanajaemin 4 года назад

      Pauvre de toi😂😂

  • @hermannnono3743
    @hermannnono3743 2 года назад +1

    C'est très faut. Pour la simple raison que Pythagore ne s'applique que dans les triangles rectangle. Mais toi tu viens appliquer Pythagore dans un triangle non rectangle 🤦🤦🤦🤦 ce qui signifie que la valeur OM n'est pas juste acause du fait que ton triangle n'est pas rectangle.

    • @jdumas
      @jdumas  2 года назад +6

      Bonjour Hermann,
      Ici, la trigonométrie s'applique uniquement dans le triangle rectangle dessiné par la décomposition de la force G sur les axes "parallèle" et "perpendiculaire".
      Après, on fait l'approximation "sin theta = theta" (ok pour les petits angles)
      Et après ça, on ne fait pas d'approximation.

  • @charlyyedila8167
    @charlyyedila8167 2 года назад +2

    Erreur sur l'expression du poids, c'est -mg....

  • @themen012
    @themen012 3 года назад +1

    Le son est médiocre 😤

    • @mahrezdu9435
      @mahrezdu9435 3 года назад +11

      supprime ton commentaire haineux