The Darboux Integral

Поделиться
HTML-код
  • Опубликовано: 2 ноя 2024

Комментарии • 84

  • @slavinojunepri7648
    @slavinojunepri7648 Год назад +6

    I just discovered this channel and found it to be an excellent refresher for my calculus and analysis. The proof on the equality of the upper and lower sums of the Darboux integral is neat and elegant. Merci énormément Dr Peyam!

    • @drpeyam
      @drpeyam  Год назад +1

      De riennn 😁

  • @cassianperera2426
    @cassianperera2426 3 года назад +11

    You are a very good Teacher and a very good lecturer,your explanation is excellent.Thank you.

    • @drpeyam
      @drpeyam  3 года назад

      Thanks so much!!!

  • @maximusmadman
    @maximusmadman 9 месяцев назад +2

    most fun ive ever had watching a math video! this guy is hilarous!!!

    • @drpeyam
      @drpeyam  9 месяцев назад

      Awwwww thank you!!!!

  • @luna9200
    @luna9200 3 года назад +10

    You helped me with so much of my analysis course! Now we're onto abstract measure theory and I don't have Peyam to help me through it!! Have you thought about making videos on this?

    • @drpeyam
      @drpeyam  3 года назад

      There’s a video on the Lebesgue integral 😄

  • @alieser7770
    @alieser7770 2 года назад +2

    Dr. Peyam you are the best! I used tı watch your videos in high school and they are still immensely helpful in college.

    • @drpeyam
      @drpeyam  2 года назад

      I’m so happy to hear that! Thank you 😊

  • @mrnogot4251
    @mrnogot4251 Год назад +1

    I like that you hit the whiteboard when you evoked the monotone sequence theorem lol.

  • @houdarebbouh3149
    @houdarebbouh3149 2 года назад

    You helped very much with my Calculus course thanks to your unique way of teaching. ThankYou!

  • @masonprice897
    @masonprice897 3 года назад +2

    Super helpful!

  • @General12th
    @General12th Год назад

    This is great! I'm so happy I was able to follow along!

  • @juanmolinas
    @juanmolinas 3 года назад +3

    Greetings Dr!, that was a nice lesson!

  • @jyotsanabenpanchal7271
    @jyotsanabenpanchal7271 2 месяца назад

    Woah 😳😨! This is new for me!!

  • @darmok3171
    @darmok3171 3 года назад +1

    Thanks!

    • @drpeyam
      @drpeyam  3 года назад

      Omg, thanks so much for the super thanks, I really appreciate it! :)

  • @tomasnavarrofebre5876
    @tomasnavarrofebre5876 3 года назад

    Lebesgue integral and mesure next! 🙏🏻

    • @drpeyam
      @drpeyam  3 года назад

      Already done ✅

  • @anthonyjulianelle6695
    @anthonyjulianelle6695 2 года назад

    In the beginner of the video you talk about subdivide (0, 1) into subrectangles. I think you should say, into,
    "subintervals".

  • @Fetrose
    @Fetrose 3 года назад

    Great presentation.

  • @IlayShriki
    @IlayShriki 4 месяца назад

    you are underated

    • @drpeyam
      @drpeyam  4 месяца назад

      Thank you :3

  • @ehess1492
    @ehess1492 3 года назад +6

    I actually laughed out loud at 9:18 😂

  • @skylardeslypere9909
    @skylardeslypere9909 3 года назад +4

    I didn't know Riemann integration was with random points in the intervals. I was always taught the method with the upper and lower sum and told it was Riemann Integration.

    • @skylardeslypere9909
      @skylardeslypere9909 3 года назад

      @@DoctrinaMathVideos i know what Riemann integration is :)

  • @murielfang755
    @murielfang755 3 года назад +2

    nice explanation

  • @phukinho
    @phukinho 3 года назад +2

    Great! Now I can stay home happy ;)

  • @arengolazizian6191
    @arengolazizian6191 2 года назад

    you are awsome
    thanks

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 года назад

    Many many thanks Dr 3.14159.......m for presenting a nice integral.

  • @frozenmoon998
    @frozenmoon998 4 года назад +3

    Those of us who love integrals made the effort to watch this whilst it was hidden :)

  • @rikthecuber
    @rikthecuber 3 года назад +3

    @Dr. Peyam How can we differentiate functions of the form x^a where a is irrational? The binomial expansion is defined only for rational exponents, so we cannot use the power rule. Like y= x^(sqrt(2)) Find dy/dx .

    • @drpeyam
      @drpeyam  3 года назад +2

      You define it as Sup of the derivatives of x^r where r goes through all the rationals less than a

    • @rikthecuber
      @rikthecuber 3 года назад

      @@drpeyam I do not know what sup is :(

    • @CarTLA
      @CarTLA 3 года назад

      @@rikthecuber Another way would be by using the limit as x->0 of ((1+x)^a-1)/x that is a (a is any real number). Using some limit algebra in the definition of derivative, you are done.

    • @ZipplyZane
      @ZipplyZane 3 года назад

      ​@@rikthecuber Sup stands for supremum, also known as the "least upper bound." This is the smallest number that is greater than or equal to all numbers in a set.
      It's kinda like the limit of the maximum value.

    • @martinepstein9826
      @martinepstein9826 Год назад

      y = x^(sqrt(2)) = e^(sqrt(2) ln(x))
      dy/dx = sqrt(2) e^(sqrt(2) ln(x)) / x = sqrt(2) x^(sqrt(2)) / x = sqrt(2) x^(sqrt(2) - 1)

  • @pierreabbat6157
    @pierreabbat6157 3 года назад

    You've shown that e.g. U15

  • @onattanriover
    @onattanriover 2 года назад

    Appreciate it

  • @geetathakur445
    @geetathakur445 2 года назад

    Its very similar to the riemann integral defined in walter rudin🤔

  • @bamdadtorabi2924
    @bamdadtorabi2924 3 года назад +1

    One question tho. Why do we need f's domain to be [0, 1]? Where does this come into play in the Darboux integral's definition?

    • @drpeyam
      @drpeyam  3 года назад +2

      Any interval [a,b] suffices

  • @vnever9078
    @vnever9078 3 года назад

    hey peyam love ur videos.......pls make vids on graph theory too.

    • @drpeyam
      @drpeyam  3 года назад

      Thank you!!! But probably not haha

    • @vnever9078
      @vnever9078 3 года назад

      @@drpeyam why? is it an area of mathematics you don't like(to teach)?

    • @Errenium
      @Errenium 2 года назад

      @@vnever9078 could be outside their comfort zone, or something that is just not conducive to their approach to pedagogy. we all have our limitations

  • @SuperYoonHo
    @SuperYoonHo 2 года назад +1

    Thank you though i don't understand/...

  • @soumyaghosh8823
    @soumyaghosh8823 3 года назад

    Dr.peyam we had an analysis course during my master's so could you make a video on Henstoke integral and one more thing can we extend the proof what you did in measures space

    • @drpeyam
      @drpeyam  3 года назад

      Oh wait, you mean the gauge integral, here it is: ruclips.net/video/YysXWe8CJVs/видео.html

  • @adityaekbote8498
    @adityaekbote8498 3 года назад +1

    Soo cool

  • @joluju2375
    @joluju2375 3 года назад +1

    Why did Darboux or other mathematicians as well come up with their own definition of an integral ? Is it just an intellectual game, or can it be useful sometimes ?

    • @drpeyam
      @drpeyam  3 года назад +2

      So the naming is usually done long after their deaths. It’s just that they found for example that the Riemann integral has limitations, so they invent new ones

  • @personxy7443
    @personxy7443 2 года назад

    if we dont use the partition(1/N),and we just know it has infimum for upper sum,and how do eusure that it converges to the infimum,?is it still monotone?

    • @drpeyam
      @drpeyam  2 года назад

      The result is still true, for this you would use a Cauchy criterion for integrability

    • @drpeyam
      @drpeyam  2 года назад

      people.tamu.edu/~tabrizianpeyam/Math%20409/Lecture%2025.pdf

    • @personxy7443
      @personxy7443 2 года назад

      @@drpeyam thank you,sir!!!~.~

  • @GhostyOcean
    @GhostyOcean 3 года назад +3

    Hmm, I think it's interesting how you skipped talking about refinements of a partition by using evenly spaced subintervals

  • @dominicjamescunneen1740
    @dominicjamescunneen1740 2 года назад

    9:17

  • @emmazambelli
    @emmazambelli Год назад

  • @timetraveller2818
    @timetraveller2818 3 года назад

    its ya boy time traveller back again time travelling
    proof: profile picture

  • @saroshiqbalbhatti2901
    @saroshiqbalbhatti2901 3 года назад

    Module theory book recommend

    • @drpeyam
      @drpeyam  3 года назад +1

      No

    • @akselai
      @akselai 3 года назад +2

      @@drpeyam bruh

    • @saroshiqbalbhatti2901
      @saroshiqbalbhatti2901 3 года назад

      @Oily Macaroni what yes

    • @rickdoesmath3945
      @rickdoesmath3945 3 года назад

      In this channel we are all analysts and we are afraid of algebraic structures (except for vector spaces, they are cute), so the words you're saying are scaring the hell out of us.

    • @rikthecuber
      @rikthecuber 3 года назад +1

      @@rickdoesmath3945 Meanwhile me being a high school student.

  • @incxxxx
    @incxxxx 3 года назад

    When the Darboux integrals are useful? Rieman integral is not sufficient?

    • @respectpartii6302
      @respectpartii6302 3 года назад

      They're useful because they limit the Riemann Integral. The lower Darboux sum is a lower bound of the Riemann Sum and the upper Darbou sum is the upper bound the Riemann sum. And a function is Darboux Integrable if and only if it is Riemann Integrable besides in this case the Darboux sums are equal to the Riemann sum.

  • @sharpnova2
    @sharpnova2 3 года назад

    bruh do a video on Lebesgue integration

    • @drpeyam
      @drpeyam  3 года назад

      Already done ✅