Finding integral from Riemann Sum

Поделиться
HTML-код
  • Опубликовано: 30 ноя 2024

Комментарии • 49

  • @jumpman8282
    @jumpman8282 11 месяцев назад +10

    When writing the limit as an integral, I noticed that 𝑓(𝑥) = 𝑥² − 1 _almost_ works, so I guessed that it was really 𝑓(𝑥) = 𝑘𝑥² − 1 for some constant 𝑘.
    Plugging that into the Riemann sum I found that 𝑘 = 4 works, and that gave me the boundaries 𝑎 = 1 ∕ 2 and 𝑏 = 5 ∕ 2.
    So my integral became ∫[1 ∕ 2, 5 ∕ 2] (4𝑥² − 1)𝑑𝑥, which also happens to evaluate to 56 ∕ 3.
    Great video by the way!

    • @PrimeNewtons
      @PrimeNewtons  11 месяцев назад +4

      How do you get to type these fancy math expressions in comments?

    • @jumpman8282
      @jumpman8282 11 месяцев назад

      @@PrimeNewtons If you're using MacOS, just open the Edit menu and choose "Emojis and Symbols".

    • @ahmet-23-1
      @ahmet-23-1 11 месяцев назад

      hey, can you explain how did you do this part "Plugging that into the Riemann sum "

    • @jumpman8282
      @jumpman8282 11 месяцев назад

      @@ahmet-23-1 ​ Yes, of course.
      Just like Prime Newtons did in the video I figured that 𝛥𝑥 = 2 ∕ 𝑛,
      which turns the Riemann sum into
      lim 𝑛→∞ ∑[𝑖 = 1, 𝑛] 2 ∕ 𝑛 ⋅𝑓(𝑎 + 𝑖⋅2 ∕ 𝑛)
      I then assumed 𝑓(𝑥) = 𝑘𝑥² − 1 ⇒ 𝑓(𝑎 + 𝑖⋅2 ∕ 𝑛) = 𝑘(𝑎 + 𝑖⋅2 ∕ 𝑛)² − 1
      Plugging that into the Riemann sum, I got
      lim 𝑛→∞ ∑[𝑖 = 1, 𝑛] 2 ∕ 𝑛⋅(𝑘(𝑎 + 𝑖⋅2 ∕ 𝑛)² − 1),
      which I then simplified to
      lim 𝑛→∞ ∑[𝑖 = 1, 𝑛] 2 ∕ 𝑛⋅((𝑎√𝑘 + 𝑖⋅2√𝑘 ∕ 𝑛)² − 1)
      By comparing this to lim 𝑛→∞ ∑[𝑖 = 1, 𝑛] 𝑛 ∕ 2⋅((1 + 𝑖⋅4 ∕ 𝑛)² − 1)
      I realized that I needed to set 2√𝑘 = 4, which gave me 𝑘 = 4
      and 𝑎√𝑘 = 1, which gave me 𝑎 = 1 ∕ √𝑘 = 1 ∕ 2.

  • @lastchance8142
    @lastchance8142 6 месяцев назад +2

    Great explanation. Appreciate that you expanded the problem to include finding and evaluating the integral. This allowed us to gain more insight into the meaning of the terms. Brilliant!

  • @syamantagogoi
    @syamantagogoi 6 месяцев назад +1

    Dear Sir ,I really appreciated the way you have articulated it. Things have become easily comprehandable for me with full of clarity.I resolved these problems myself in my note pad with full of confidence having watched this video. Thanks a lot and keep on enlightening the viewers like us.

  • @wannabeactuary01
    @wannabeactuary01 13 дней назад

    The youtube algorithm works... I spent time looking for limits as Riemann sums on bing and this turned up the following day. Cool video and with the comments below all helpful!

    • @wannabeactuary01
      @wannabeactuary01 13 дней назад

      √ ² ³ ± ≡ ∏ ∑ π ζ ∃ ∀ ⇔ ⇒
      ℂ ℕ ℙ ℚ ℝ ℤ
      ∈ ∉ ⊂ ⊆ ⊄ ⊈ ⊃ ∪ ∩ ∖ ∅
      ⁺⁻⁽⁾¹²³⁴⁵⁶⁷⁸⁹⁰ᵃᵇᶜⁿᵐᵏᵗˣʸᶻ
      ⇐∧∨↦
      ≤≥≪≫≠≈≝~≅
      ∫∴∤⌊⌋⌈⌉
      αβγδε∞θλμ
      ₀₁₂₃₄₅₆₇₈₉₍₎ₓᵧᵢⱼ
      ‰½⅓¼⅕⅐⅛⅑⅒⅔⅖¾⅗⅜⅘⅚⅝⅞∛∜

      Some symbols for you ∑

  • @hasandogan3510
    @hasandogan3510 11 месяцев назад +4

    Bro you deserve a lot more than this! Keep going on!

  • @jonathanfarnum4884
    @jonathanfarnum4884 Месяц назад

    Always a pleasure to watch a master.

  • @jan-willemreens9010
    @jan-willemreens9010 2 года назад +2

    ... Good day Newton, When I watch a presentation of this topic, the problem for me is not to be able to follow it properly, but to possibly reproduce it! In short I don't find this subject difficult, but it still is difficult to give the whole material a firm place in my head, isn't it crazy?! A subject that I therefore have to repeat regularly, to be able to explain it to other interested students over and over again! Newton, thank you for another clear presentation on Riemann, and I will also recommend it to other students having some problems regarding this topic; great work! Take care, Jan-W

    • @PrimeNewtons
      @PrimeNewtons  2 года назад +1

      Hello Jan-W. I fixed it. I noticed it as soon as it was published. I appreciate your attention to detail. Have a wonderful day. I hope for the same.

    • @jan-willemreens9010
      @jan-willemreens9010 2 года назад +1

      @@PrimeNewtons ... No problem Newton, we're here to help each other! Jan-W

  • @steveinstpaul2024
    @steveinstpaul2024 Год назад

    Excellent explanation. Thanks. I look forward to watching more of your videos.

  • @elliotappiah7434
    @elliotappiah7434 Месяц назад

    please start teaching physics as well. you are such ha good teacher

  • @SonuKumar-sw6cr
    @SonuKumar-sw6cr 2 года назад +2

    Awesome explanation... Seems quite doable

  • @leo10306
    @leo10306 Год назад +1

    Great video sir....❤

  • @skwbusaidi
    @skwbusaidi 7 месяцев назад +1

    The integeral that I have reach to is
    1/2 integeral of x^2-1 from 1 to 5
    Which give the same value of 56/3
    This can be reach be letting delta x = 4/n and a=1and b=5

  • @sevenser7574
    @sevenser7574 11 месяцев назад

    Happy New year :)
    Nice to watch your video today

  • @georgeelliott6788
    @georgeelliott6788 7 месяцев назад +1

    awesome video mate

  • @project_elon
    @project_elon 4 месяца назад +1

    Me being kind in every video I watch.

  • @eugeneeugene6791
    @eugeneeugene6791 7 месяцев назад

    Awesome video 😊🎉

  • @jesusvarela6754
    @jesusvarela6754 4 месяца назад +1

    Excelente!!

  • @uniquechannel.5168
    @uniquechannel.5168 3 месяца назад

    great explanation

  • @hosseinmortazavi7903
    @hosseinmortazavi7903 2 месяца назад

    You are the best

  • @ahmet-23-1
    @ahmet-23-1 11 месяцев назад

    so good explanation

  • @bobbyno93
    @bobbyno93 Год назад +1

    haha 8:45 "lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus auctor id justor eu ultrices" means customer service with a basketball coach.

  • @Kesh3-k3o
    @Kesh3-k3o 10 месяцев назад

    Excellent

  • @NoaSolivagus
    @NoaSolivagus 7 месяцев назад +1

    greatttt

  • @wannabeactuary01
    @wannabeactuary01 11 дней назад

    You need to show your preferred strategy 🙂for the integral...

  • @johnhaikali
    @johnhaikali 7 месяцев назад +1

    perfect

  • @pauldalnoky6055
    @pauldalnoky6055 Год назад

    Advanced stuff. Hope I can follow it.

  • @alieid8617
    @alieid8617 5 месяцев назад +1

    mucho gracias

  • @cameronspalding9792
    @cameronspalding9792 10 месяцев назад

    When I saw this I kept treating i like it was the imaginary unit, so I thought it would involve a contour integral!

  • @michellauzon4640
    @michellauzon4640 8 месяцев назад

    Lim = 2 * Integral ((1 + 4x) ** 2 dx) (from 0 to 1) - 2.

  • @M0uiDev
    @M0uiDev 7 месяцев назад +1

    thxxx

  • @beez8022
    @beez8022 8 месяцев назад

    I am confused by how he got 2n^3+3n^2+n when he expanded n(n+1)(n+1), because it looks like it should be n(n^2+2n+1) => n^3+2n^2+n, could someone explain please?

    • @gileadedetogni9054
      @gileadedetogni9054 8 месяцев назад +1

      Hey man, it's because we have n(n+1)(2n+1), and not n(n+1)(n+1)

    • @beez8022
      @beez8022 8 месяцев назад +1

      Oh ok, thank you, I didn’t see the 2n part

  • @gauravkunwer5380
    @gauravkunwer5380 10 месяцев назад

    beautiful

  • @juldehjalloh6222
    @juldehjalloh6222 10 месяцев назад

    thank you sire

  • @TAMUNONENGIOFORIROBERTDIRI
    @TAMUNONENGIOFORIROBERTDIRI Месяц назад

    sharp

  • @blasdelezo8396
    @blasdelezo8396 5 месяцев назад

    How many hats do you have, man ?

  • @ashton4595
    @ashton4595 Год назад

  • @cameronspalding9792
    @cameronspalding9792 10 месяцев назад

    For this part I would use Oh notation rather than write out the full fraction.