Can you calculate area of the Green Circle? | (Triangle) |

Поделиться
HTML-код
  • Опубликовано: 23 янв 2025

Комментарии • 31

  • @alanthayer8797
    @alanthayer8797 4 дня назад +1

    Awesomeness sir ! Thanks as usual

    • @PreMath
      @PreMath  4 дня назад

      Excellent! Glad you enjoyed it! 👍
      You are very welcome!
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 4 дня назад +4

    Cosine rule:
    c²=a²+b²-2abcosα
    c= 19 cm
    Semi perimeter:
    s = ½(a+b+c) = 28cm
    Area of triangle:
    A² = s(s-a)(s-b)(s-c)
    A = 84√3 = 145,49 cm²
    Radius of circle:
    R = A/s = 3√3 = 5,196 cm
    Area of circle:
    A = πR² = 27π cm² ( Solved √ )

  • @wackojacko3962
    @wackojacko3962 4 дня назад +1

    @ 2:55 , At parties I use the Law of Cosines to calculate social distancing from circle jerks. 😊

  • @otisammathematics9887
    @otisammathematics9887 3 дня назад

    Nice one Sir

  • @MrPaulc222
    @MrPaulc222 4 дня назад +3

    Make the left side a 30, 60, 90 triangle.
    Sides are 21(given), 21/2 (part of the base), and (21*sqrt(3))/2 (this is the triangle's height).
    Therefore, the triangle's area is 8*((21*sqrt(3))/2)
    Start simplifying:
    4*(21*sqrt(3), so triangle area of 84*sqrt(3) un^2.
    Before calculating triangle area in terms of r, find length AC:
    The remaining part of the base is 16 - (21/2) = 11/2.
    (11/2)^2 + ((21*sqrt(3))/2)^2 = (AC)^2.
    121/4 + 1323/4 = (AC)^2
    1444/4 = (AC)^2
    AC = sqrt(1444)/2
    So (2*sqrt(361))/2. Conveniently, sqrt(361)=19, so AC = 19
    Triangle area in terms of r = 28r.
    28r = 84*sqrt(3)
    r = 3*sqrt(3)
    (3*sqrt(3))^2 * pi = 27pi approximates to 84.82 un^2

  • @andrepiotrowski5668
    @andrepiotrowski5668 4 дня назад +1

    You don’t need to calculate the area of the triangle in this case.
    b = sqrt(21² − 10.5² + 5.5²) = sqrt(361) = 19
    The perpendicular through O cuts BC in a point D, and
    BD = (16 + (21 − 19)) / 2 = 9
    BDO is a 30-60-90 triangle, so:
    r = DO = 9 / sqrt(3) = 3 * sqrt(3)

  • @jamestalbott4499
    @jamestalbott4499 4 дня назад

    Thank you!

  • @spiderjump
    @spiderjump 3 дня назад

    use cosine rule to find side AC . Then using tangent rule you can write
    21 -- sqrtof 3x r + 16 -- sqrt3x r = 19 and
    find r and thus area of circle

  • @thewolfdoctor761
    @thewolfdoctor761 4 дня назад +3

    I forgot about the triangle area from inradius formula, so I added the areas of triangles AOC, BOC and AOB (9.5r + 8r + 10.5r) to get 28r. so 84*sqrt(3) = 28r ==> r = 3*sqrt(3) ==> area of circle = pi * r^2 = 27pi.

    • @marioalb9726
      @marioalb9726 4 дня назад +2

      Inradius formula A=r.s, is exactly the same that three times area of internal triangles
      A=½bh+½bh+½bh =½p.r=s.r
      You didn't forget !!

  • @georgebliss964
    @georgebliss964 4 дня назад

    Cosine law, AC = 19.
    Labeling 3 sets of equal corner tangents as a, b & c.
    Clockwise starting from corner A.
    Then a + b = 21, b + c = 19, c + a = 16.
    b = 19 - c , so a + b becomes a + 19 - c = 21.
    c = 16 - a , so a + 19 - c becomes a + 19 - 16 + a = 21.
    2a - 3 = 21.
    a = 9.
    Joining B to centre of circle, then dropping perpendicular onto BC to make a triangle.
    Tan 30 = r / a = r / 9.
    r = 9 tan 30 = 9 x 1 /root 3.
    Area of circle = Pi x 9 x 9 x 1 / 3.
    27 Pi.

  • @himo3485
    @himo3485 4 дня назад +1

    AD⊥BC BD=21/2 AD=21√3/2 DC=11/2
    Triangle area = 16*21√3/2*1/2=84√3
    (11/2)²+(21√3/2)²=AC² 121/4+1323/4=1444/4=361=AC² AC=19
    16*r*1/2 + 19*r*1/2 + 21*r*1/2 = 84√3        56r = 168√3 r = 3√3
    Green Circle area = 3√3*3√3*π = 27π

  • @keithwood6459
    @keithwood6459 4 дня назад

    I followed along and got to the answer at the end. I feel good about that.

  • @predator1702
    @predator1702 3 дня назад

    Fantastic, thank you teacher 👍🙏

  • @uwelinzbauer3973
    @uwelinzbauer3973 4 дня назад

    At first I used the law of cosine to find missing side length. Then I used the theorem, that tangent points on a circle from a common external point have equal distances.
    The tangent points divide the side lengths, the values of the parts can be found by a system of three equations with three unknowns.
    Final step Pythagoras on the 30/60/90 right triangle in bottom left corner gives circle Radius and area.
    We have another 60° triangle with all sides being integers.
    Thanks 😊 for sharing this interesting 👍 geometry question, greetings and best 👌 wishes.

  • @santiagoarosam430
    @santiagoarosam430 4 дня назад

    Área del triángulo =16*(21√3/2)/2 =84√3 ---> 16=r√3+(16-r√3) ; 21=r√3+(21-r√3) ; AC=21+16-2r√3=37-2r√3 ---> 84√3=(r/2)(16+21+37-2r√3)---> r=3√3 ---> Área del círculo =27π.
    Gracias y un saludo cordial.

  • @angeluomo
    @angeluomo 4 дня назад

    I used law of cosines to get the missing side length (19), then used the formula for an inscribed circle, which is r^2=((28-19)*(28-21)*(28-16))/28, which gives a value of r^2=27. So the area of the circle is just 27*pi.

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 дня назад

    cos(60/2)=√(p(p-c)/21*16)...c=19(Briggs)...r=2A/p=A/28=(1/56)21*16*sin60=3√3

  • @scottdort7197
    @scottdort7197 4 дня назад

    I found solving much easier if you attack the triangle with Pythagoras. Then you can find the circleradius two times the area of the perimeter triangle divided by the sum of perimeter.

  • @phungpham1725
    @phungpham1725 4 дня назад

    1/From O drop OH, OI, and OK perpdndicular to BC, AB and AC respectively.
    Focus on the triangle BOH.
    The triangle BOH is a 30-60-90 special triangle, so BH = BI=rsqrt3.
    -> CH=CK= 16-rsqrt3
    and AI=AK= 21-rsqrt3
    2/Let p be the half of the perimeter of the triangle ABC:
    We have:
    p = rsqrt3+(16-rsqrt3)+(21-rsqrt3)= 37-rsqrt3
    3/ By the cosine theorem we have: AC= 19-> p = 1/2(21+16+19)=28
    --> 37-rsqrt3=28
    -> rsqrt3= 9->r=3sqrt3
    4/Area of the circle= 27 x pi sq units😅😅😅

  • @AmirgabYT2185
    @AmirgabYT2185 4 дня назад +1

    S=27π≈84,86

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 дня назад

    AC^2 = BA^2 + BC^2 - 2.BA.BC.cos(60°) = 16^2 + 21^2 - 2.16.21.(1/2) = 256 + 441 - 336 = 361, so AC = sqrt(361) = 19.
    The perimeter of ABC is 16 + 21 + 19 = 56 and the half perimeter is 28.
    The Heron formula gives the area of ABC: Area = sqrt(28.(28 - 16).(28 - 21).(28 - 19)) = sqrt(28.12.7.9) = sqrt(21168) = 84.sqrt(3).
    The radius of the circle is: (2.area of ABC) / perimeter of ABC = (168.sqrt(3)) / 56 = 3.sqrt(3). Its area is ((3.sqrt(3))^2) .Pi = 27.Pi

  • @cyruschang1904
    @cyruschang1904 4 дня назад

    (right side length)^2 = 21^2 + 16^2 - 2(21)(16)cos60° = [(21 - r√3) + (16 - r√3)]^2
    21^2 + 16^2 - (21)(16) = (21 + 16 - 2r√3)^2 = (21 + 16)^2 - 2(21 + 16)(2r√3) + 12r^2
    12r^2 - (4√3)(21 + 16)r + (3)(21)(16) = 0
    3r^2 - (√3)(37)r + (3)(3)(7)(4) = 0
    (r - 3√3)(3r - (7)(4)√3) = 0
    r = 3√3 or (28/3)√3) (not possible)
    Circle area = 27π

  • @unknownidentity2846
    @unknownidentity2846 3 дня назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let D (E,F) be the point of tangency on AB (AC,BC). According to the two tangent theorem we know:
    AD = AE
    BD = BF
    CE = CF
    With r being the radius of the inscribed circle we also know that OD=OE=OF=r. With BD=BF and OD=OF we can conclude that the right triangles OBD and OBF are congruent. Theref
    ore we know that ∠OBD=∠OBF=∠DBF/2=60°/2=30°. So OBD and OBF are 30°-60°-90° triangles and we can conclude:
    OB = 2r
    OD = OF = r
    BD = BF = √3*r
    AE = AD = AB − BD = 21 − √3*r
    CE = CF = BC − BF = 16 − √3*r
    AC = AE + CE = (21 − √3*r) + (16 − √3*r) = 37 − 2√3*r
    The area of the triangle ABC can be calculated in two different ways:
    A(ABC) = (1/2)*AB*BC*sin(∠ABC)
    A(ABC) = A(OAB) + A(OAC) + A(OBC) = (1/2)*AB*OD + (1/2)*AC*OE + (1/2)*BC*OF = (1/2)*(AB + AC + BC)*r
    (1/2)*AB*BC*sin(∠ABC) = (1/2)*(AB + AC + BC)*r
    AB*BC*sin(∠ABC) = (AB + AC + BC)*r
    21*16*sin(60°) = [21 + (37 − 2√3*r) + 16]*r
    21*16*√3/2 = (74 − 2√3*r)*r
    168√3 = 74*r − 2√3*r²
    2√3*r² − 74*r + 168√3 = 0
    r² − (37/√3)*r + 84 = 0
    r = 37/(2√3) ± √[37²/(2√3)² − 84]
    r = 37/(2√3) ± √(1369/12 − 84)
    r = 37/(2√3) ± √(1369/12 − 1008/12)
    r = 37/(2√3) ± √(361/12)
    r = 37/(2√3) ± 19/(2√3)
    We have two possible solutions:
    r = 37/(2√3) + 19/(2√3) = 56/(2√3) ⇒ AC = 37 − 2√3*r = 37 − 56 = −19
    r = 37/(2√3) − 19/(2√3) = 18/(2√3) ⇒ AC = 37 − 2√3*r = 37 − 18 = 19
    Finally we obtain the only useful solution:
    r = 18/(2√3) = 3√3
    Now we are able to calculate the area of the inscribed circle:
    A = πr² = 27π
    Best regards from Germany

  • @zupitoxyt
    @zupitoxyt 4 дня назад +1

    Thanks a lot from the bottom of my heart ❤️

  • @sergioaiex3966
    @sergioaiex3966 3 дня назад

    Solution:
    Let's label the sides:
    AB = c
    BC = a
    AC = b
    Applying Law of Cosines in ∆ ABC, we have:
    b² = a² + c² - 2 a c cos β
    b² = (16)² + (21)² - 2 (16) (21) cos 60°
    b² = 256 + 441 - 2 . 16 . 21 . ½
    b² = 697 - 336
    b² = 361
    b = 19
    Applying Heron's Formula to calculate ∆ ABC Area, we have:
    s = (a + b + c)/2
    s = (16 + 19 + 21)/2
    s = 28
    ∆ ABC Area = √ [s (s - a) (s - b) (s - c)]
    ∆ ABC Area = √ [28 (28 - 16) (28 - 19) (28 - 21)]
    ∆ ABC Area = √ [28 (12) (9) (7)]
    ∆ ABC Area = √ (4 . 7 . 3 . 4 . 3 . 3 . 7)
    ∆ ABC Area = 4 . 7 . 3 √3
    ∆ ABC Area = 84√3
    Let's calculate the radius by Inradius Formula
    Inradius = Area/semiperimeter
    ∆ ABC Area = r . s
    84√3 = r . 28
    r = 84√3/28
    r = 3√3
    Final Step
    Green Circle Area = π r²
    Green Circle Area = π (3√3)²
    Green Circle Area = 27π square units ✅
    Green Circle Area ≈ 84.8230 square units ✅

  • @orliestutorials581
    @orliestutorials581 4 дня назад

    Your very good in analizing problems, but your solution is not applicable in work, very long, it takes too much time, can you not make shorter solution by applying trigonometry

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 дня назад

    What happened to my Comment?
    I made a Comment that was deleted and denounced. Why?
    I gave the right answer GCA = 27Pi Square Units.
    Whom did I offended?

    • @PreMath
      @PreMath  4 дня назад +2

      There has got to be a mistake or miscommunication. My sincere apologies 🙏
      You are the best and keep rocking👍