Proof of De Morgan's Law for the Union of Two Sets

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 6

  • @darcash1738
    @darcash1738 6 месяцев назад +1

    Union --> OR between sets
    Intersect --> AND between sets
    Complement --> NOT for a set
    So, converting our statement, we get:
    ~(A ^ B),
    By Demorgan,
    ~A and ~B
    And converting back we get
    Complement(A) Intersection Complement(B)

  • @iagocasalderreycasalderrey8368
    @iagocasalderreycasalderrey8368 Год назад +2

    Amazing. Best example ever. It's noticiable you like maths

  • @hjjkjb5436
    @hjjkjb5436 4 года назад +1

    Why do you sometimes use the biconditional arrow and sometimes just use = ?.... How to know when to use which?

    • @TheMathSorcerer
      @TheMathSorcerer  4 года назад +4

      biconditional means it must work both ways, you can use either here
      you can do it like this with
      or you can prove each direction individually
      => and

  • @TheMathSorcerer
    @TheMathSorcerer  9 лет назад +1

  • @howardlim7555
    @howardlim7555 6 лет назад

    is this secnd de morgan's law?