Harvard University Admission Interview Tricks.✍️🖋️📘💙

Поделиться
HTML-код
  • Опубликовано: 17 янв 2025

Комментарии • 9

  • @اسماعیلخسروی-خ6ظ
    @اسماعیلخسروی-خ6ظ 19 дней назад

    Easy ❤❤

  • @EC4U2C_Studioz
    @EC4U2C_Studioz 19 дней назад +1

    For taking the log to base 5 as it was the appropriate log base in this case, it is better to cancel the log of base and the exponential to reduce the number of steps to solve exponentials when the log base is appropriate. The power rule is implicit when doing such a move.

    • @superacademy247
      @superacademy247  19 дней назад

      Thanks for sharing your expert perspective! 💯🙏🤩💕

  • @ManojkantSamal
    @ManojkantSamal 19 дней назад +1

    ^=read as to the power
    *=read as square root
    Now explain
    9× *{3.(*3)
    =3^2 ×{3^(1/2)}×{3^(1/4)}
    =3^(11/4)
    As per question
    {3^(11/4)}^(1/5^x)
    =3^(11/4.5^x)
    Now 243=3^5
    As per question
    3^{11/4.5^x}=3^5
    So,
    11/4.5^x=5
    So,
    11/4=5^x. 5=5^(x+1)
    So,
    5^(x+1)=11/4
    Take log
    log{5^(x+1)}==log (11/4)
    (X+1).log5=log11-log4
    X+1={log11-log4}/log5
    X={(log11-log4 )/log5}-1..May be

    • @superacademy247
      @superacademy247  19 дней назад

      Thanks fo sharing r your in-depth knowledge 🥳🎉🎁🌲

  • @2012tulio
    @2012tulio 18 дней назад

    x = approx. -0.371

  • @prollysine
    @prollysine 19 дней назад

    (3^(11/8))^(1/(5^x))=3^5 , (11/8)^(1/(5^x))=5 , / ()^(5^x) , 11/8=5*5^x , 5^x=11/40 , x=log(11/40)/log(5) ,
    test , (3^(11/8))^(1/(11/40))=3^(11/8 * 40/11) , --> 3^5=LHS , RHS --> 243=3^5 , same , OK ,

    • @2012tulio
      @2012tulio 18 дней назад

      it's log (11/20) not 11/40

    • @prollysine
      @prollysine 18 дней назад

      @@2012tulio OK , thanks ,