China | A Nice Algebra Problem | Math Olympiad

Поделиться
HTML-код
  • Опубликовано: 27 янв 2025

Комментарии • 7

  • @Quest3669
    @Quest3669 13 дней назад

    a/b= 5/3 >0 from both eqns.
    Putting this in 1st eqn
    b^3= 27/ 8 or b= 3/ 2 and a= 5/2 soln.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 13 дней назад

    (12)+(13)=25 (2)+(3) (ab ➖ 3ab+2). (3)+(6) =9 (3)+(3^3) (1)+(3^1) (1)+(3) (ab ➖ 3ab+1).

  • @wes9627
    @wes9627 13 дней назад

    a^2/25=b^2/9 or 3a=5b or b=(3/5)a;
    a^3+(3/5)a^3=25; a^3=25*5/8=(5/2)^3, so a=5/2 and b=(3/5)(5/2)=3/2
    Check: (5/2)^3+(5/2)^2*(3/2)=(125+75)/8=25 & (3/2)^3+(5/2)(3/2)^2=(27+45)/8=72/8=9

  • @ganeshdas3174
    @ganeshdas3174 13 дней назад +2

    For a, b> 0 : a = 5 & b = 3

  • @key_board_x
    @key_board_x 13 дней назад

    a³ + a²b = 25
    a².(a + b) = 25
    a + b = 25/a² ← equation (1)
    b³ + ab² = 9
    b².(a + b) = 9
    a + b = 9/b² → recall (1): a + b = 25/a²
    9/b² = 25/a²
    a²/b² = 25/9
    (a/b)² = (± 5/3)²
    a/b = ± 5/3 → given a > 0 and b > 0 → a/b > 0
    a/b = 5/3
    a = 5b/3 ← equation (2)
    Restart
    a³ + a²b = 25
    b³ + ab² = 9
    ------------------------------------------------------------------------subtraction
    (a³ + a²b) - (b³ + ab²) = 25 - 9
    a³ + a²b - b³ - ab² = 16
    a³ - b³ + a²b - ab² = 16
    (a³ - b³) + (a²b - ab²) = 16
    (a³ - b³) + ab.(a - b) = 16 → recall: a³ - b³ = (a - b).(a² + ab + b²)
    (a - b).(a² + ab + b²) + ab.(a - b) = 16
    (a - b).[(a² + ab + b²) + ab] = 16
    (a - b).[a² + 2ab + b²] = 16
    (a - b).(a + b)² = 16 → recall (2): a = 5b/3
    [(5b/3) - b].[(5b/3) + b]² = 16
    [(5b/3) - (3b/3)].[(5b/3) + (3b/3)]² = 16
    (2b/3).(8b/3)² = 16
    (2b/3).(64b²/9) = 16
    128b³/27 = 16
    b³ = (16 * 27)/128
    b³ = 27/8
    b³ = (9/2)³
    → b = 9/2
    Recall: (2):
    a = 5b/3
    a = [5 * (9/2)]/3
    a = [5 * 9/2]/3
    a = 45/6
    → a = 15/2