Math Olympiad | A Nice Exponential Problem | VIJAY Maths

Поделиться
HTML-код
  • Опубликовано: 23 ноя 2024

Комментарии • 9

  • @Quest3669
    @Quest3669 23 часа назад +2

    X+1/x= 4 or x^ 2-4x+1= 0
    (X- 2)^ 2=3 or x= +-√3+(2)

  • @kareolaussen819
    @kareolaussen819 13 часов назад

    Divide numerator and denominator by x^7, and introduce u=x+1/x to get equation
    (u^2-1)/(u+1)=u-1=3.
    Next solve x+1/x=4 or (x-2)^2=4-1=3 to get
    x = 2 ± √3

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 часа назад

    [Time slot 3-56 onwards
    Application of a^2 - b^2=(a+b)(a-b) cancels the denominator and for such a solution sir, u did not get another quadratic equation ]
    Here is the solution
    We may get the following equation when we divide the numerator and denominator by x ^7
    (x^2 +1/x^2 +1)/(x +1/x +1) =3
    > (x +1/x)^2 -2x*1/x +1)/(x +1/x +1) =3
    >(a^2 -1)/(a+1)=3 ( **pl note that here we did not use a^2 - 1=(a+1)(a-1) to cancel out the denominator)
    >a^2-1=3a +3
    > a^2 -3a -4= 0
    >(a -4)(a+1)=0
    Hence
    a=4 or -1
    When a =4
    then x + 1/x =4
    >x ^2 -4x +1= 0
    x = 2 +/- √3
    If a = -1
    then x +1/x =-1
    x = (-1+/- √3i )/2

  • @vrdacosta00
    @vrdacosta00 19 часов назад +1

    👍👏👏

  • @raghvendrasingh1289
    @raghvendrasingh1289 День назад +1

    Good problem ❤