A Nice Algebra Problem | Math Olympiad | Radical Problem

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 10

  • @quinty.support
    @quinty.support 3 дня назад +2

    [2/(1+√5)]^12
    Consider rationalizing the denominator....
    => [2(1-√5)/(1+√5)(1-√5)]^12
    => [2(1-√5)/(1² - √5²)]^12
    => [2(1-√5)/-4)]^12
    => [(- 1 - √5)/2]^12 => [(1 - √5)/2]^12 (this value is the conjugate of the golden ratio)
    Φ = [(1 + √5)/2], /Φ (conjugate of golden ratio) = [(1 - √5)/2]
    Φ • /Φ = -1
    [/Φ]^12 = [(1 - √5)/2]^12
    Let, x = [(1 - √5)/2]......
    Φ² = Φ + 1
    (since x is the conjugate, it satisfies:)
    x² = x + 1
    x³ = x • x² = x(x + 1) = x² + x = 2x + 1
    x⁴ = x • x³ = x(2x + 1) = 2x³ + x = 3x + 2
    x⁵ = x • x⁴ = x(3x + 2) = 3x² + 2x = 5x + 3
    x^n = F(n)x + F(n-1)
    (°•°) x^12 = F(12)x + F(11)
    F(12) = 144 and F(11) = 89
    x^12 = 144x + 89
    => x^12 = 144[(1 - √5)/2] + 89
    => x^12 = [(144 - 144√5)/2] + 89
    => x^12 = 72 - 72√5 + 89 = 161 - 72√5

    • @SALogics
      @SALogics  2 дня назад +1

      Very nice! I really appreciate that ❤

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 2 дня назад +1

    Tricky one

    • @SALogics
      @SALogics  2 дня назад +1

      Thanks for liking! ❤

  • @YAWTon
    @YAWTon 3 дня назад +1

    Shouldn't you mention the golden ratio and Fibonacci?

  • @trojanleo123
    @trojanleo123 3 дня назад +1

    Answer = 161 - 72√5