Размер видео: 1280 X 720853 X 480640 X 360
Показать панель управления
Автовоспроизведение
Автоповтор
[2/(1+√5)]^12 Consider rationalizing the denominator.... => [2(1-√5)/(1+√5)(1-√5)]^12 => [2(1-√5)/(1² - √5²)]^12 => [2(1-√5)/-4)]^12 => [(- 1 - √5)/2]^12 => [(1 - √5)/2]^12 (this value is the conjugate of the golden ratio) Φ = [(1 + √5)/2], /Φ (conjugate of golden ratio) = [(1 - √5)/2] Φ • /Φ = -1 [/Φ]^12 = [(1 - √5)/2]^12 Let, x = [(1 - √5)/2]......Φ² = Φ + 1 (since x is the conjugate, it satisfies:) x² = x + 1 x³ = x • x² = x(x + 1) = x² + x = 2x + 1 x⁴ = x • x³ = x(2x + 1) = 2x³ + x = 3x + 2 x⁵ = x • x⁴ = x(3x + 2) = 3x² + 2x = 5x + 3 x^n = F(n)x + F(n-1)(°•°) x^12 = F(12)x + F(11) F(12) = 144 and F(11) = 89 x^12 = 144x + 89 => x^12 = 144[(1 - √5)/2] + 89 => x^12 = [(144 - 144√5)/2] + 89 => x^12 = 72 - 72√5 + 89 = 161 - 72√5
Very nice! I really appreciate that ❤
Tricky one
Thanks for liking! ❤
Shouldn't you mention the golden ratio and Fibonacci?
Yes, ❤
Answer = 161 - 72√5
Very nice! ❤
[2/(1+√5)]^12
Consider rationalizing the denominator....
=> [2(1-√5)/(1+√5)(1-√5)]^12
=> [2(1-√5)/(1² - √5²)]^12
=> [2(1-√5)/-4)]^12
=> [(- 1 - √5)/2]^12 => [(1 - √5)/2]^12 (this value is the conjugate of the golden ratio)
Φ = [(1 + √5)/2], /Φ (conjugate of golden ratio) = [(1 - √5)/2]
Φ • /Φ = -1
[/Φ]^12 = [(1 - √5)/2]^12
Let, x = [(1 - √5)/2]......
Φ² = Φ + 1
(since x is the conjugate, it satisfies:)
x² = x + 1
x³ = x • x² = x(x + 1) = x² + x = 2x + 1
x⁴ = x • x³ = x(2x + 1) = 2x³ + x = 3x + 2
x⁵ = x • x⁴ = x(3x + 2) = 3x² + 2x = 5x + 3
x^n = F(n)x + F(n-1)
(°•°) x^12 = F(12)x + F(11)
F(12) = 144 and F(11) = 89
x^12 = 144x + 89
=> x^12 = 144[(1 - √5)/2] + 89
=> x^12 = [(144 - 144√5)/2] + 89
=> x^12 = 72 - 72√5 + 89 = 161 - 72√5
Very nice! I really appreciate that ❤
Tricky one
Thanks for liking! ❤
Shouldn't you mention the golden ratio and Fibonacci?
Yes, ❤
Answer = 161 - 72√5
Very nice! ❤