How to solve a complex logarithm question

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 25

  • @PowerLearnScienceandMathsTV
    @PowerLearnScienceandMathsTV  Год назад +3

    Please leave a comment behind on how you see the solution.

  • @wisdomfonore
    @wisdomfonore Год назад +1

    Great 👌

  • @karpholmes6942
    @karpholmes6942 Год назад +3

    Log2(4) = m
    Thus
    Log2(x-1)= log4(x+5)
    Can be shown as
    Log4(x-1)^m= log4(x+5)
    m =2 and remove common logs
    (X-1)^2=x+5
    X^2 -2x +1 = x+5
    X^2 -3x -4=0
    Factor or quadratic formula. I’ll will do the first
    (X-4)(x+1)= 0
    X= 4 and 1 10:39
    Log2(-2) is undefined and 4 isn’t.
    3=+sqrt9
    4=x

  • @Paul-222
    @Paul-222 Год назад +6

    Log base 2 (x-1) = log base 4 (x-1)^2. Remove the logs, solve the quadratic.

  • @MartinPerez-oz1nk
    @MartinPerez-oz1nk Год назад +1

    THANKS PROFESOR!!!!, VERY INTERESTING!!!!!!

  • @jan-willemreens9010
    @jan-willemreens9010 Год назад +1

    ... Good day to you, Of course there are multiple ways to solve such equations, and I'm more than 100% sure (lol) you know that too! Given: LOG(b2)(X - 1) = LOG(b4)(X + 5) [ Applying the Change of Base formula and setting up the restriction(s) for possible X's ] ... X - 1 > 0 and X + 5 > 0 ... X > 1 and X > - 5 so the combined restriction is X > 1. LOG(b2)(X - 1) = LN(X - 1)/LN(2) and LOG(b4)(X + 5) = LN(X + 5)/LN(4) = LN(X + 5)/(2*LN(2)) = (1/2)LN(X + 5)/LN(2) = LN((X + 5)^(1/2))/LN(2) [ Equating both changed log expressions (LN) ] ... LN(X - 1)/LN(2) = LN((X + 5)^(1/2))/LN(2) ... LN(X - 1) = LN((X + 5)^(1/2)) ... X - 1 = (X + 5)^(1/2) ... (X - 1)^2 = X + 5 [Skipping some obvious simplifying steps ] ... X^2 - 3X - 4 = 0 ... (X - 4)(X + 1) = 0 ... X1 = 4 v X2 = - 1 [ Respecting the inequality restriction X > 1 ] ... X1 = 4 is the only valid solution for the original equation ( I also checked this solution in the original equation, just to be sure ) ... finally obtaining S = { 4 } ... it is always interesting/educational to watch different people solving the same problem, and I thank you for your more elaborate presentation and in general for your math efforts ... Best regards, Jan-W

  • @honestadministrator
    @honestadministrator Год назад +2

    log (x+5) to the base 4
    = log (x+5) to the base 2
    / log 4 to the base 2
    = log (x+5) to the base 2 / 2
    Hereby given expression results in
    (x-1) ^2 = ( x +5)
    or x^2 - 3 x - 4 = 0 i.e. (x-4) (x+1) = 0
    or x = 4, -1
    For the given equation only feasible solution is x= 4

  • @bobwineland9936
    @bobwineland9936 Год назад +1

    From logbase10 of (X-1)^2 =logbase 10(X+5), and since the bases are the same then the exponents are equal to each other. Seems like a faster way to solve.

  • @hellohabibi1
    @hellohabibi1 Год назад +1

    x=4?

  • @shadmanhasan4205
    @shadmanhasan4205 Год назад +1

    Answer: f(4) = ~1.585

  • @ErmiyasTsegu
    @ErmiyasTsegu Год назад

    I love you!!!

  • @trojanleo123
    @trojanleo123 Год назад

    x = {-1,4} but -1 is extraneous, so x = 4 is the only real root.

  • @muhammademran2464
    @muhammademran2464 Год назад +1

    Don't need to mention (write) the base if it's 10 throughout
    Log(x-1)/log2 = log (x+5)/log4
    2Log(x-1) = log (x+5)
    X^2 -2x + 1 = x +5
    X^2 - 3x -4 =0
    X=4, x=-1

  • @studieswithak3383
    @studieswithak3383 Год назад +2

    Bro there's a simple method to solve this by looking
    log 4(x+5)=1/2log2(x+5)

    • @PowerLearnScienceandMathsTV
      @PowerLearnScienceandMathsTV  Год назад

      You are right bro. Wanted to explore the other way of solving that. Thanks for your valuable contribution.

  • @Heaven_Vs_Hel
    @Heaven_Vs_Hel Год назад

    x-1=√(x+5), because log(x+5) to the base 4 is log[√(x+5)] to the base 2, where x>1. 😀😉

  • @NurHadi-qf9kl
    @NurHadi-qf9kl Год назад

    2x-2=x-5
    .x=-3

  • @NurHadi-qf9kl
    @NurHadi-qf9kl Год назад

    O...x=7

  • @anandamondal6092
    @anandamondal6092 Год назад

    X=7