A Level Physics Revision: All of Electric Fields (in under 30 minutes)

Поделиться
HTML-код
  • Опубликовано: 4 янв 2025

Комментарии • 130

  • @zhelyo_physics
    @zhelyo_physics  2 года назад +19

    Hi guys! I have also filmed some past paper questions for practice: ruclips.net/video/Sigq6SJwJgo/видео.html

    • @wofaiibor3353
      @wofaiibor3353 2 года назад +1

      Yeah,am a surgical physicst 😎.

  • @saadadchoudhury7163
    @saadadchoudhury7163 2 года назад +129

    Finishing so many chapters the night before the exam wouldn't have been possible without you :3

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +19

      Good luck tomorrow! Glad this was useful!

    • @abdalkhan7207
      @abdalkhan7207 2 года назад +19

      LMFAOOOOOO were all out here😭😭😭

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +14

      Good luck guys! You've got this!

    • @mhasultanmohammed4552
      @mhasultanmohammed4552 2 года назад +6

      It is 2am right now and I am doing the same thing and I hav exam in the morning

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +5

      @@mhasultanmohammed4552 Good luck in the exam!

  • @xenonn5499
    @xenonn5499 11 месяцев назад +29

    "Welcome back physicists " oh my God this phrase is another whole motivation , thank youuu

    • @zhelyo_physics
      @zhelyo_physics  11 месяцев назад +5

      heh thanks for the comment! Glad to hear so!

    • @I-no-queen
      @I-no-queen 7 месяцев назад +1

      I've been hearing it wrong this entire time..I thought he said "welcome back to physics"

  • @Unknown-tk5xg
    @Unknown-tk5xg 7 месяцев назад +30

    watching this before my paper 2 exam so i can compensate my horrible performance in paper 1

    • @adfa841
      @adfa841 7 месяцев назад +1

      REAL

    • @rollingrogue3807
      @rollingrogue3807 7 месяцев назад +1

      Good luck

    • @anujbhattarai21
      @anujbhattarai21 4 месяца назад +2

      is electric fields not a part of the paper 4 syllabus?

    • @bluecat5669
      @bluecat5669 3 месяца назад +6

      @@anujbhattarai21paper 4? Which exam board are you?

    • @DJreeik
      @DJreeik 2 месяца назад

      What did you get at the end?
      What are the hardest topics?

  • @zion9146
    @zion9146 2 года назад +25

    great video. i was sceptical of youtube vids for physics because i thought they would be over complicated because many of the creators have degree level knowledge and ability but these are perfect so far also my exact exam board. Thanks a lot please keep this style

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +5

      Thanks a lot for the comment! Much appreciated, while I love complicated stuff, the most fun is breaking it down to an accessible level : ) Glad you found it useful and drop me a comment if something doesn't make sense!

    • @zion9146
      @zion9146 2 года назад

      @@zhelyo_physics will do thanks again

  • @yasminkhalifa8709
    @yasminkhalifa8709 2 года назад +24

    Thank you sooooooo much, that was helpful, I'm forever grateful and ecstatic beyond measure that I found your channel, You're not making physics seems intricate as my physics teacher

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +12

      I am glad you are finding them useful! : )physics is fun!

    • @yasminkhalifa8709
      @yasminkhalifa8709 2 года назад +5

      @@zhelyo_physics You’re right,physics fun while your teaching thank you again

    • @jnjnijl.
      @jnjnijl. 2 года назад +1

      lol

  • @tychophotiou6962
    @tychophotiou6962 3 года назад +13

    Good summary. But you made a major mistake at 21:30.
    The electron will actually hit the lower plate after 9.5 nanoseconds so it will never leave. In the time you calculated it would actually travel a vertical distance of 2.6 m!

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +21

      Of course, I was testing if any of my viewers will spot this : ) Thanks a lot for mentioning this!

    • @dropletzdna2833
      @dropletzdna2833 2 года назад +2

      @Tycho Photiou How did u get those numbers

    • @clipHero369
      @clipHero369 2 года назад +1

      i got 7.5 ns as it only travels 0.5 m, how did you work out the distance

    • @nehlhaider5409
      @nehlhaider5409 2 года назад +1

      I used the formula s = ut + 1/2at² to find the time taken to hit the lower plate , with the values of s being 0.1, a = 4.4 x 10^15, and u being 0 ( as when it enters, there is no vertical velocity). I'm getting the value of 6.7 nanoseconds is it correct or have I made a mistake?

  • @PokerEasyAcademy
    @PokerEasyAcademy 2 года назад +6

    YOUR VIDEOS HELPED ME GETTING A* in PHYSICS!!!!!

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +3

      Amazing result! Well done and thanks a lot for your comment!

    • @rachaeltissera5570
      @rachaeltissera5570 2 года назад

      @IslaBetPoker what tips would you give to ppl who are doing the exam?

  • @freyaaustin1250
    @freyaaustin1250 Месяц назад

    Something I was taught is that instead of using '1/4x pi x epsilon naught' you can use a constant k which is equal to 9x10^9. I find it easy to remember and gives you less numbers to imput. Thank you for the video!

  • @thevinecompany7733
    @thevinecompany7733 2 года назад +4

    Honestly you deserve so many more followers, can't wait till your account blows up remember me when it does haha :)

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +1

      Haha of course! Thanks a lot for the kind words and support to the channel!

  • @polVallverdu-mf9uk
    @polVallverdu-mf9uk Год назад +6

    Hi sir, in 17:20 , since F in Newton's 2nd law is the resultant force would you not need to take into account the gravitational force acting on the electron and substitute F = ma - mg ? Or do we just assume the gravitational force to be negligible? help pls I don't understand :)

    • @Miftahul_786
      @Miftahul_786 Год назад +4

      Yes that is indeed the case. The force of gravity is 10^36 times smaller so it is practically negligible

  • @looteb
    @looteb 7 месяцев назад +2

    hi at 19:48 is u=0? if s=0.2m why cant we use v^2=u^2+2as, I tried this way and got a different value for the vertical velocity
    thanks for the videos 😄

    • @zhelyo_physics
      @zhelyo_physics  7 месяцев назад +3

      hmm, same here. Let me investigate this. Very interesting.

    • @Jacob11227
      @Jacob11227 7 месяцев назад +1

      its because you dont have S it wont necessarily have travelled 2cm down because it has entered the field at some unknown height

  • @betin731
    @betin731 Месяц назад +1

    Yet another EPIC ZPhysics W

  • @Tharushi_SM
    @Tharushi_SM 2 месяца назад +1

    The dimensions of this question is faulty, no? 21:20 because the vertical distance is 2.68 m, but the question gives it as 0.2 m. The answer wouldn’t exactly be giving the speed right after it exists the field then.
    So, anyway with the given dimensions, resultant velocity should be around 1.54 x 10^8 ms^1 right?
    Anyway, thank you so much for this. I love your explanations. You connect the concepts very fluidly, cover all most all the parts in the lesson in a breeze. I actually grasped a few of the lessons I considered super confusing, in less than a day before my test, thanks to you. Thank you so much

    • @zhelyo_physics
      @zhelyo_physics  2 месяца назад +2

      Thank you for the comment! I agree, I remember when I filmed this video I made up the problem as I was writing. Glad the video is useful overall and thank you!

    • @Tharushi_SM
      @Tharushi_SM 2 месяца назад +1

      @@zhelyo_physics Absolutely, thank you for the great content.

  • @roberto7711
    @roberto7711 7 месяцев назад

    studying for my exams for foundation year electrical engineering and i just want to thank you so much for this video, such clear and useful information

    • @zhelyo_physics
      @zhelyo_physics  7 месяцев назад

      thank you so much for the comment and best of luck on your exams!! : )

  • @georgebrannelly6697
    @georgebrannelly6697 Год назад

    For the answer at 21:00 shouldnt it be 0 since it moves upwards by 0.23m during its time in the accelerator and thus hits the plate?

  • @Gfiber-v4p
    @Gfiber-v4p 2 года назад +5

    thank you so much , you explained it very beautifully

  • @maglobaluk
    @maglobaluk Год назад

    This doesn’t really have anything to do with electric fields but when an electron is moving through two parallel plates, if the length was increased, could it travel faster than speed of light, similar to minute 19:58

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      excellent question. In that particular example btw, the acceleration is above the number of the speed of light, but the acceleration acts for a very small fraction of a second, so it does not accelerate it to that value.
      To answer your question though - we are always bound by the speed of light. In particle accelerators like CERN though they are using similar principles to accelerate particles as close as possible to the speed of light at higher and higher energies, getting to the speed of light though is impossible for particles with mass.

    • @maglobaluk
      @maglobaluk Год назад

      @@zhelyo_physics again this is very theoretical😂 but if an electron is acting like a wave, does that mean it is massless and so can travel at speed of light or higher?

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      no worries, I need to make a video about this. Nope, all particles seem to have wave like properties (including the photon), but the massless particles go at the speed of light, the particles with mass are bound below it.

    • @maglobaluk
      @maglobaluk Год назад

      @@zhelyo_physics okay thank you, looking forward to the video!

  • @fatimanasir8797
    @fatimanasir8797 2 года назад +1

    Hey! Just wanted to say thanks. Your videos are very helpful! 😊

    • @zhelyo_physics
      @zhelyo_physics  2 года назад

      Thanks a lot for your comment! Much appreciated!

  • @mahamaddahir5193
    @mahamaddahir5193 2 года назад +1

    Hi
    At 26:57 you substituted the electric potential for the potential difference. Are these two the same?

  • @sas9454
    @sas9454 7 месяцев назад

    for the equation in 8:11 if we want to find electric field strength for q we need to put big Q in the equation?

    • @zhelyo_physics
      @zhelyo_physics  7 месяцев назад

      In E=Q/4pier^2 Q is the source of the electric field, in F=Eq q is what feels the electric field. Hope this helps!

  • @Khusikumari-i4m
    @Khusikumari-i4m Год назад

    You are the best explainer. I am from India

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      Thank you for the comment! Much appreciated!

  • @SyedghulameTahaBukhari
    @SyedghulameTahaBukhari 7 месяцев назад

    13:45. Shouldn't the field lines at each end be bent slightly?

    • @zhelyo_physics
      @zhelyo_physics  7 месяцев назад

      only around the edges potentially. We assume the field between plates is perfectly uniform.

  • @indiraflo6770
    @indiraflo6770 2 года назад +1

    This was toooooo helpful
    Thank you so much 🥺

  • @Allinone-nm2jh
    @Allinone-nm2jh 9 месяцев назад

    thank you very much .

  • @oluwaseyitanbakare5277
    @oluwaseyitanbakare5277 Год назад

    Hi, Could you please explain why the capacitance of a capacitor is inversely proportional to the distance between the plates?

    • @zhelyo_physics
      @zhelyo_physics  Год назад +1

      Excellent question, so this actually can be derived and it stems from the fact that E=V/d for uniform field and this is the field for a parallel capacitor. Since Q=CV, Q=CEd i.e. we can see that C=QE/d, to derive it for a parallel plate capacitor you need to find the electric field which is a little beyond the scope of the course but can be found using what is known as Gauss's law.
      Intuitively, if the plates are closer, d is smaller, you would be able to store more charge per unit volt as the field is stronger. Hope this helps!

    • @oluwaseyitanbakare5277
      @oluwaseyitanbakare5277 Год назад

      @@zhelyo_physics thank you 👍🏾

  • @isabellecrabbe9992
    @isabellecrabbe9992 10 месяцев назад

    great vid !!

  • @yixinwang9575
    @yixinwang9575 Год назад

    This video helps me a lot. Thanku😊

  • @ROSLYNNNN
    @ROSLYNNNN 9 месяцев назад

    I love your videos but I wanted to clear my confusion up if you don't mind all I have is just 1 and a half months now from my a2 physics exam and is the concept covered in your playlist enough to tackle the past paper question?

    • @zhelyo_physics
      @zhelyo_physics  9 месяцев назад

      I generally recommend supplementing my videos with a textbook, the syllabus as a checklist and also every possible past paper question out there : )

  • @matteocollura8437
    @matteocollura8437 Год назад

    more helpful than my teacher fr

  • @Vlad-rk5go
    @Vlad-rk5go 2 года назад

    25:32 why isn't "r" squared this time?

    • @zhelyo_physics
      @zhelyo_physics  2 года назад

      So if you are referring to the potential, V=Energy/Charge and Energy is proportional to 1/r rather than 1/r^2 as introduced at 24:21 . Hope this helps!

    • @mollyrobinson6615
      @mollyrobinson6615 Год назад

      @@zhelyo_physics how come Energy is proportional to only 1/r, rather than 1/r^2? Thank u so much for this video!!

  • @thevinecompany7733
    @thevinecompany7733 2 года назад +1

    Hi sorry to bother you again, on the ocr 2020 paper 2 q 23 a I can't seem to understand why you have to multiply by sin60, surely the electric force is in all directions of each proton. Why does it only have a vertical magnitude in the question?

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +2

      excellent question! So in this charge triangle, some the electric force from one of the charges below will be towards P and a little to the right, the other one towards P and a little to the left. The horizontal components will be equal and opposite and they will cancel out leaving only a repulsive vertical component. Hope this makes sense! Let me know if it doesn't.

    • @thevinecompany7733
      @thevinecompany7733 2 года назад

      @@zhelyo_physics Sorry i don't really understand that, Is there a different way you could explain or? If I'm using up too much of your time don't worry btw!

    • @zhelyo_physics
      @zhelyo_physics  2 года назад

      No worries! I would draw out the two vectors along the triangle. Then resolve them into vertical and horizontal components (the horizontal ones will be equal and opposite and should cancel.)

    • @thevinecompany7733
      @thevinecompany7733 2 года назад

      @@zhelyo_physics Hi sorry I just saw this comment, So basically I just have to imagine theres only a horizontal and vertical component of electric force, (but the horizontal cancels)? This does make sense to solve the question however I just dont get why the force directing towards the top point in the diagonal direction is not the same as the vertical component as I thought they were always the same in every direction.

    • @aspexcy3605
      @aspexcy3605 Год назад

      @@thevinecompany7733 my man got aired

  • @JulienGodard-t3y
    @JulienGodard-t3y Год назад

    Hi sir, at the end of the video when you say "this was pretty much the entire OCR A specification" does that mean there are still things I need to revise in this module?

    • @zhelyo_physics
      @zhelyo_physics  Год назад +2

      so I follow all the points on the OCR spec when I make these videos however as always it is a great idea to have the spec at hand and to be ticking off and checking you have covered everything.
      I also recommend lots of practice questions such as these: ruclips.net/video/Sigq6SJwJgo/видео.html good luck! : )

  • @nanjearmstrong4648
    @nanjearmstrong4648 Год назад

    Thanks very much sir this video really help me

  • @bharadwajeddanapudi8507
    @bharadwajeddanapudi8507 Год назад

    Sir, when an electron enters a uniform field, will its downward motion towards +ve plate not be opposed by the direction of the electric field?

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      nope, the electric field is defined as the force per unit charge the particle will experience at any point. A negative particle will be attracted to the positive plate at each point, whereas a a positive particle will be repelled and attracted towards the negative.
      Hope this helps! : )

    • @bharadwajeddanapudi8507
      @bharadwajeddanapudi8507 Год назад

      @@zhelyo_physics thank you sir. So when finding the speed of the particle in both instances, theoretically they should be equal right sir?

  • @k0yam
    @k0yam 11 месяцев назад +1

    does anyone know the application he i using to make these videos?

    • @zhelyo_physics
      @zhelyo_physics  11 месяцев назад +2

      I do! It's just Microsoft Whiteboard, which is a free software that often comes with windows.

    • @k0yam
      @k0yam 11 месяцев назад +1

      @@zhelyo_physics thanks a lot!

  • @Kuipersulayman
    @Kuipersulayman 2 года назад

    For the insulator of relative permitivity equation, is that actually in our spec, Bcz it’s not in our formula booklet ( ocr A ), and I have a feeling they will make a question with capacitors and electric fields.

    • @zhelyo_physics
      @zhelyo_physics  2 года назад

      It's not in the formula booklet but I have definitely seen it asked in questions. We definitely need to know it.

  • @talalna12
    @talalna12 2 года назад

    Hello sir! In Fg, we do put the negative sign. But do we have to answer it in negative or just simply take the magnitude?

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +1

      excellent question, in this case we were looking at the magnitude only to compare them the forces.

    • @talalna12
      @talalna12 2 года назад

      @@zhelyo_physics oh ok ok thank you so much sir! Your videos are really helping me with A2 physics!

  • @hennanoneofyourbusiness8636
    @hennanoneofyourbusiness8636 2 года назад

    Can a stationary charge experience an electric force? and does a stationary charge in a vacuum have zero electric potential?

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +2

      1) yep! The whole field of electrostatics is based around it and the force is given by coloumb's law.
      2) a stationary charge will always have an electric potential, as another charge around it will have the potential to move. The force is transmitted by the electric field, so it doesn't matter if it is vacuum of or not. Hope this helps! : )

  • @doyouknowdawae2625
    @doyouknowdawae2625 2 года назад

    You forgot to mention potential difference from an electric radial field, exact same as electric field strength in a radial field, just replace E with v =, and r^2 is now r.

  • @opsharabhuiyan4881
    @opsharabhuiyan4881 2 года назад

    underrated

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +2

      thanks a lot! I have a playlist here of similar videos on all the topics: ruclips.net/p/PLSygKZqfTjPC3hJ7nRSnnXTw3tI_o67dR

  • @binodtharu4910
    @binodtharu4910 Год назад

    Calculate the speed of an electron accelerated from rest through a distance of 40 mm by a uniform electric field of 3.0 x 10 3 NC^-1. I tried doing the question but the answer I got isn’t matching with the given answer.

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      so find it's acceleration using F=ma, EQ=ma, giving us a=EQ/m , after this, use the suvat equations: v^2=u^2+2as, initial speed=0, so v=sqrt(2aS)=sqrt(2EQ/m * S) plug in all the numbers converting the mm to m and you will get the right answer : )

    • @binodtharu4910
      @binodtharu4910 Год назад

      @@zhelyo_physics still I’m not getting the required answer

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      @@binodtharu4910 did you get around 6.5*10^6 m/s? That should be the right answer: sqrt(2*3.0*10^3*1.6*10^(-19)*40*10^(-3)/9.11*10^(-31)) probably a calculator mistake

    • @binodtharu4910
      @binodtharu4910 Год назад

      @@zhelyo_physics I got that as answer but the answer given is 1.03 x 10 ^ 31

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      Argh, the question is wrong then. The speed cannot exceed the speed of light (well questions that showcase this shouldn't be designed). Must be a typo in the mark scheme especially, is it from a past paper?

  • @haneyya
    @haneyya Год назад

    is this for AS Level/ 1st year of A Levels?

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      So this is from the A Level syllabus not AS. Depending on the school though, as it's a two year course many institutions might teach it at a different time.

  • @martinmhonyera8793
    @martinmhonyera8793 2 года назад +2

    watched this in 2x speed to copmlete in 15 mins

    • @zhelyo_physics
      @zhelyo_physics  2 года назад +1

      Amazing! Glad this is helpful, excellent bit of speedy revision there!

  • @ArberMusaja
    @ArberMusaja Год назад

    when u worked out Vy was the t meant to be squared in the suvat equation

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      which bit of the video exactly? for the suvat equation I used v=u+at in the y direction and no square there. Hope this makes sense!

  • @felixdevisser1870
    @felixdevisser1870 2 года назад +2

    🐐

  • @Alex324
    @Alex324 Год назад +3

    Mock in 20 mins lads, 1.5x speed lol

    • @zhelyo_physics
      @zhelyo_physics  Год назад

      Hope it goes well!

    • @Alex324
      @Alex324 Год назад +1

      @@zhelyo_physics it didn't, further mechanics hurts my soul