PIDs Simplified

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024

Комментарии • 199

  • @chrispietersen804
    @chrispietersen804 4 года назад +107

    After watching countless PID videos to try and get understanding of PID separately, I can honestly say that your video was by far the most straight forward, easy to understand and straight to the point. Simplicity is key and you did that super well! Thank you so much!

    • @raoabdulhadi
      @raoabdulhadi Год назад +2

      You wrote it already what I wanted to write.

  • @TrFusion
    @TrFusion 5 лет назад +324

    D is watching sudden change of position within the fraction time to give feedback. It does’t matter where the target is.
    So ..
    1. Set P for the smooth and sluggish curve.
    2. Set I to help add power to P if it is taking too much time to get to the target.
    3. Set D to push the power back if I is doing too much work and excessive acceleration.
    P I’ll try to get to the target.
    I I’ll give you extra power because you are taking too much time.
    D I’ll slow you down because I is giving too much power and detected sudden movement in short period of time.

    • @MrLeon3773
      @MrLeon3773 5 лет назад +10

      Thanks for the brilliant comment!

    • @pastrie42
      @pastrie42 4 года назад +5

      This was so much better of an explanation of what each one does.

    • @BobtheBuilder0
      @BobtheBuilder0 4 года назад +3

      This made it really clear for me, thank you!

    • @sunsetpark_fpv
      @sunsetpark_fpv 4 года назад +2

      Nice breakdown!

    • @YassineSfaxien
      @YassineSfaxien 4 года назад +2

      Good explanation. Thx

  • @TormodSteinsholt
    @TormodSteinsholt 3 года назад +21

    P term is a rubber band with a resting length of zero. It needs distance to produce tension. If you increase the load on a rubber band, it needs to stretch further in order to produce the correct tension. This is insufficient for a regulator since you expect a regulator to compensate. The I term naturally complements the shortcoming of a rubber band. And since both pull towards the setpoint, you need the D term to compensate to avoid overshoot.

  • @tazblink
    @tazblink 4 года назад +6

    I have to write and say thank you. I built a PID box to control oven temps and I have been screwing with it all day. I knew what I wanted it to do but I just didn't know how to get there. Your explanation of D solved my problems. I was getting a 20 degree over and 10 degree under oscillation. Now I am getting a .1 to .3 degree over oscillation and thats it. It holds at exactly 167.0 to 167.3. Perfect for killing covid-19 on masks gloves whatever. I am using 2 oven thermometers to verify the temp and it is dead nuts. Again thanks so much I hadn't heard D explained that way before and it all clicked when you said it. TAS

  • @pjohnston84
    @pjohnston84 6 лет назад +10

    I've seen a lot of pid videos, but this graph does a great job demonstrating what is going on. The graph is very informative
    Thank you!

  • @nofianto
    @nofianto 3 года назад

    your explanation about PID basic concept for drone is the best... easy to understand and simple....

  • @tigerseye73
    @tigerseye73 5 лет назад +5

    As an electrician, I sometimes had to tune PID for process temp. control. I was able to muddle through it but it was sometimes frustrating. Wish I could have viewed your channel years ago. Thankfully, most micro controllers now have auto-tune feature. Turn it on and let it do its thing. Your video can be applied to many different control application. Thanks for sharing.

    • @johndarwinmateo796
      @johndarwinmateo796 3 года назад

      What if auto tune doesn't fix the problem what would be the best way to fix it?

    • @johndarwinmateo796
      @johndarwinmateo796 3 года назад

      I'm fixing an oven in our laboratory and it has a pid controller I tried to autone and offset the controller the pv and the sv is already equal unfortunately the actual temperature in the inside is very high

  • @michaelosinowo226
    @michaelosinowo226 6 лет назад +8

    this is the best theoretical
    explanation so far

  • @samuelpaes2
    @samuelpaes2 4 года назад

    OMG, YOU ARE THE BEST, I AM A BRAZILIAN STUDENT OF ELECTRICAL ENGINEERING AND YOU HELP ME SO MUCH, THANKS MAN

  • @FAB1150
    @FAB1150 5 лет назад +25

    This is the best explanation I have ever encountered, thank you!

  • @ADHDintothewild
    @ADHDintothewild 4 месяца назад

    THE BEST TUTORIAL ON PID CONTRLLERS! GREAT JOB MAN!

  • @dk1415
    @dk1415 Год назад

    OMG finally someone to dumb down PIDs for me! I have been searching forever! Thank you soooooo much!!

  • @kaushalmody9617
    @kaushalmody9617 4 года назад +3

    Great job man, simplified PID explanation.
    Just what I wanted.

  • @WhipGear
    @WhipGear 5 лет назад

    The best explanation of quad tuning I have seen thus far... You are the Khan Academy of quad-copters... Keep up the good work.

  • @G.J.G.P.
    @G.J.G.P. Год назад

    Dude, i was here, because to know the meaning PID for tuning a stand alone ecu. But somehow i think its basicly the same and you explained it very good😅

  • @liuyanxin5900
    @liuyanxin5900 6 лет назад +6

    That’s a really great presentation, now I got some basic understanding of PID control! Thx a lot!

  • @ardentdfender4116
    @ardentdfender4116 9 месяцев назад

    One the best explanation I’ve come across watching quite a lot of PID vids. Still trial and error in tuning goes a long way. Especially if you got a very good updated trend to look at on a short time scale like inn15-30 min span or so. That allows you to see how things are playing out on a trend in adjustment as you try to smooth things out.

    • @yourdreamhomebyjenmagpantay
      @yourdreamhomebyjenmagpantay 4 месяца назад

      Hi how to adjust the PID temperature controller. Should I put all setting to zero then start adjusting the p?

  • @BayLA415626
    @BayLA415626 6 лет назад +1

    best discription i ever head out off all the videos i ever seen on tuning. i wii finally be able to tune my quad.. thanks a lot for breaing it down in a way anyone can understand and not just making stuff up....

  • @mikebarkasi6467
    @mikebarkasi6467 4 года назад

    Excellent way of explaining how PID effect the performance!

  • @StefanoBorini
    @StefanoBorini 16 дней назад

    P: fast. D: smooth. I: consistent.

  • @desolatekd
    @desolatekd Год назад

    Really a great way you explained the most complicated part. Thanks

  • @hancock780
    @hancock780 2 года назад

    Why is it that no one else could simplify what's going on. I've watched many many videos and read lots and I could never retain what was going on. You made this so simple to understand.

  • @j0joe33
    @j0joe33 4 года назад +2

    Referring to the beginning of the explanation: P term, as i understand it. does not slow down or speed up. That is derivative. P term also does not move back and fourth. That is Integral. The P term tries to move to the target, but because of physics, it ends up being in the wrong place. It outputs proportional to the input. If the p is 2/1, it outputs 2 for every 1. It is one number, the desired destination. Integral and Derivative correct the errors.

  • @eriksen7022
    @eriksen7022 Месяц назад

    first video that made me understand pids

  • @WacekDziewulski
    @WacekDziewulski 5 лет назад +6

    This is just about the best explanation of PIDs ever! I've watched a lot of videos on the topic including Joshua Bardwell's PID tuning masterclass and as much as I appreciate his practical approach, You've just nailed it in theory! Understanding Your video gives one a clear view on the Anti-Gravity and Feed Forward in Betaflight. Thanks for allowing me to grasp the whole thing. Awesome job! Subscribing for more!

  • @marien1991
    @marien1991 5 лет назад +1

    Thank you for making me understand the use of each one of the three terms. Before this explanations, everything was like XYZ in mathematics, but from now on i will have in mind what PID means when calculating. It will make a big difference, thanks to you.

  • @Malik.essadi
    @Malik.essadi 3 года назад

    Best simplifying video on PID ever

  • @vasaaviarion
    @vasaaviarion Год назад

    I got inspired to learn about these after watching the brick experiment channel build an automatic depth control Lego submarine.

  • @AlexandreLeone
    @AlexandreLeone 5 лет назад +1

    Very good explanation dude! Now I know all I need to know about PID!

  • @catalystmachineworks4794
    @catalystmachineworks4794 3 года назад

    You won the nerd contest. You are king nerd. Well done.

  • @seankiverchuk4627
    @seankiverchuk4627 Год назад

    Thank you for your explanation of pid I been trying to figure out how it works.

  • @rodrigodiniz13
    @rodrigodiniz13 3 года назад

    Wow. that was the best explanation about PIDs ever!

  • @captainkook9371
    @captainkook9371 6 лет назад

    You've got a stable pulse on your mouse. Very helpful video. Thanks.

  • @EnnTomi1
    @EnnTomi1 Месяц назад +1

    in a very bad and laymen way to put it, P is like distance, I is like speed, D is like acceleration.

  • @pierschan4467
    @pierschan4467 5 лет назад +2

    Great explanation on PID's physical meaning!

  • @RimmyTimfpv
    @RimmyTimfpv 6 лет назад

    This makes more sense to me than any other PID explanation video I've seen, so thank you. I've been flying for about a year and have never really been able to visualize what each term does, and I just built a quad that is giving me more trouble to tune than my other two quads ever did, so I'm here to learn!

  • @ENOKFPV
    @ENOKFPV 7 лет назад +5

    This is a really nice look at PIDs. Good work.

  • @Warlock0880
    @Warlock0880 11 месяцев назад

    I had a foreign professor teach a class on Control Systems. These concepts didn't make sense until I started manipulating objects in Godot. My cube is orbiting my target point.

  • @X19-x5f
    @X19-x5f Год назад

    This is a great explanation. Thanks for posting!

  • @carlosmolina4892
    @carlosmolina4892 2 года назад +1

    really nice explanation. thank u

  • @safian31337
    @safian31337 7 лет назад +5

    You sir are a great teacher.

  • @VaibhavKulkarni1991
    @VaibhavKulkarni1991 6 месяцев назад

    You explained very very simple sir,thank you so much

  • @suyongpark3125
    @suyongpark3125 6 лет назад

    Kudos on his ingenuity!
    Thx a lot!!! :-)
    Your lecture helps me to survive final exam.

  • @iFlySometimes
    @iFlySometimes 7 лет назад +15

    Surprises me you don't have more subscribers, your channel is great. Keep it up!

    • @pastrie42
      @pastrie42 4 года назад

      Considering his video is completely wrong, I disagree. The comments, thankfully, saved me from this bad information.

  • @gilbertproductions4754
    @gilbertproductions4754 3 года назад

    This is the perfect visualization i needed. Thank you

    • @shubhamnayak8148
      @shubhamnayak8148 3 года назад

      Why do we use a PID controller if the only thing that it does is to follow the input. Why dont we directly fed our input to the system instead of passing it through PID.

  • @boxer71c55
    @boxer71c55 Год назад

    Awesome explanation!

  • @lavexitosh
    @lavexitosh Год назад

    Thanks for the simplified explanation!

  • @isramv74
    @isramv74 2 года назад

    great video, now I finally understand PIDs , thanks you!

  • @illtryanything5264
    @illtryanything5264 5 месяцев назад

    The human brain and body are massively proficient at PID. I just tried it a bunch by touching things quickly. I never would have thought about that aspect of the body until just now.

  • @YigitAgronomlar
    @YigitAgronomlar 15 дней назад

    Thank you for clear explanation.

  • @blackmaggotfpv
    @blackmaggotfpv 4 года назад

    That's the best explanation outhere! Thanks!!

  • @SerhiyVoytenko
    @SerhiyVoytenko 5 месяцев назад

    Thanks!. It's the best simple explanation

  • @fpvpf
    @fpvpf 3 года назад

    Thanks man. I've now better understanding of PIDs.

    • @shubhamnayak8148
      @shubhamnayak8148 3 года назад

      Why do we use a PID controller if the only thing that it does is to follow the input. Why dont we directly fed our input to the system instead of passing it through PID.

  • @turpialito
    @turpialito 3 года назад

    Great explanation. Kudos.

  • @cameronjacobs3144
    @cameronjacobs3144 6 лет назад

    Great video! When someone asks me about pid's I show them this video

  • @rl2109
    @rl2109 6 лет назад +4

    I'm surprised that I am just finding your channel... Absolutely worth the sub! Thanks for posting; I'll be checking out other content on your channel...!

  • @ngcebomadziba2305
    @ngcebomadziba2305 4 года назад +1

    wow, best explanation ever

    • @kubilayakbulut5302
      @kubilayakbulut5302 4 года назад

      did you see any code example like this explanation?, I mean basic codes

  • @RushitShukla
    @RushitShukla 3 года назад

    Thank you for uploading. Well explained.

  • @nikitam6164
    @nikitam6164 11 месяцев назад

    thank you for the wonderful video. Helped me understand better :)

  • @florentinosanchez3969
    @florentinosanchez3969 Год назад

    really nice video

  • @idavancunha8246
    @idavancunha8246 Год назад

    Great explanation! 👏

  • @dronereaper772
    @dronereaper772 5 лет назад

    Awesome video this has already help me in this Awesome hobby/sport you are a excellent teacher this video will help every beginner like myself that’s intimidated by tuning cause some people in the sport are so advanced that they are far removed from knowing and understanding how a beginner thinks 🤔. Thanks so much this has shaved months maybe longer off understanding Fpv in its entirety 😃👍

  • @ayoubboutebal1549
    @ayoubboutebal1549 5 лет назад

    Very well explained ! it helps controling compressor speed for AC loop

  • @julianfiller8731
    @julianfiller8731 5 лет назад

    Straightforward and to the point. Thanks

  • @senalperera8629
    @senalperera8629 Год назад

    Great explanation 🫡

  • @acr_-kj8gd
    @acr_-kj8gd 5 лет назад

    the illustrations made it simple, I like it

  • @mehdiaghaei1792
    @mehdiaghaei1792 2 года назад

    I'm very surprised se how you chat with the control paraemters. That's kind of lovely relationship

  • @otiliamarc4040
    @otiliamarc4040 4 года назад

    This video was so good and easy to understand!! Huge thanks!!

  • @srviejo2298
    @srviejo2298 6 лет назад

    Excellent video!

  • @rollingfpv6303
    @rollingfpv6303 2 года назад

    Good video

  • @ukaszwasniewski7668
    @ukaszwasniewski7668 8 месяцев назад

    Well done 👍 thanks man

  • @calebsherman886
    @calebsherman886 6 лет назад +1

    9:05 Just gonna let you know those arrows are backwards in size, as it curves away the arrows are bigger but in the center of the curve they're smaller because less change.

    • @SiieeFPV
      @SiieeFPV  6 лет назад +1

      good catch, I'm drawing the value curve but thinking about the acceleration curve

  • @TheRainHarvester
    @TheRainHarvester 3 года назад

    Have you ever tried zeroing out the kterm (the accumulating variable) when crossing the setpoint?
    I noticed it's always retaining it's value when overshooting, when it should really help to go the opposite direction.

  • @godsun358
    @godsun358 5 лет назад

    .kool way to look at P.I.Ds

  • @manojyadav6967
    @manojyadav6967 Год назад

    best explanation

  • @shlukyy
    @shlukyy 6 лет назад

    Great explanation.Subscribing.

  • @SSBelmont
    @SSBelmont 6 лет назад

    Very well explained in simple terms, well done, subbed you

  • @fabricio.ferrari
    @fabricio.ferrari 3 года назад

    good explanation. Btw, what instrument do you use for drawing?! thanks

  • @mattgrimmett6067
    @mattgrimmett6067 4 года назад +5

    I almost never see Derivative being used in manufacturing ("D term").... Proportional and Integral are more than enough to tune almost any loop

  • @69RocketBones
    @69RocketBones 3 года назад

    Have been struggling to understand PIDs for ages. This video helped a lot. Thank you. :)

  • @chaizxcv8810
    @chaizxcv8810 7 лет назад +1

    Thx. This is so easy to understand.

  • @محمدالسروري-ه4ه
    @محمدالسروري-ه4ه 2 года назад

    nice job

  • @TheeSherminator
    @TheeSherminator Месяц назад

    P pushes up, D stabilize , I gives that last push.. But what fixed the D to overcompensate from the bumbps? was expecting I to fix that problem but now im confused. Guess im stupid since everybody gets it.

  • @edouardmalot51
    @edouardmalot51 6 лет назад +1

    I am not sure of the D term explanation.
    D term is base of the error slope (Target - current position), not calculated according to how far we are from setpoint.
    Anyway, I love yours videos, thanks a lot !

    • @skyfolk9956
      @skyfolk9956 5 лет назад

      Agree with you on both terms, the D term and the video as well.

  • @hasanx8317
    @hasanx8317 13 дней назад

    is a PID good in following a moving target?

  • @syaralhabib6969
    @syaralhabib6969 4 года назад

    Thanks, very helpful information

  • @vladimirmonakhov8770
    @vladimirmonakhov8770 6 месяцев назад

    Thank you. Thank you! Thank you!!!

  • @zrmsraggot
    @zrmsraggot 2 года назад

    Is it possible to create a PID controler that won't allow overshoot like ' You need to stop this car right before it falls off a cliff '

  • @luckysmart5909
    @luckysmart5909 2 года назад

    Nice teaching

  • @totoilongo6132
    @totoilongo6132 6 лет назад +1

    Thanks for sharing

  • @dbingamon
    @dbingamon Год назад

    But Integral can accumulate and stall a PID as well. It's called "Integral Windup".

  • @RahulSharma-oc2qd
    @RahulSharma-oc2qd 2 года назад

    saviors do exist

  • @mrbradley8743
    @mrbradley8743 3 года назад

    I just don't understand. Whenever I see other examples, it shows a high rate of change (approaching set point quick, say a PV of 40degress and set point of 50 degrees)giving D a high value. If we are approaching a set point and want to avoid overshoot, is the D value inverse? So the D value gives a minus value to the PID controller to lower the power to avoid overshoot?

  • @GLXYFPV
    @GLXYFPV 4 года назад

    This is incredibly helpful thanks!

  • @rahulrpatil3005
    @rahulrpatil3005 4 года назад

    Thankyou SIR . Thankyou very much

  • @PolDee187
    @PolDee187 27 дней назад

    So if D has to do a lot of work, the motors are getting hotter? :D .. I'm trying to get this .. nice Video

  • @stuartp2006
    @stuartp2006 4 месяца назад

    I feel like I've been ruined by this pseudocode PID where all the PID values are inverted, which opposite of industry standard but shows up in this one game I play.

  • @francoisleveille409
    @francoisleveille409 Год назад

    A big P is UNDER DAMPENED. A small P is OVER DAMPENED.

    • @ZeGxldnPoo
      @ZeGxldnPoo Год назад

      Based on the small 🍆 energy you give off, your P must be over-dampened.

  • @Ger.FPV2023
    @Ger.FPV2023 5 лет назад

    Perfect explanation! Thanks!

  • @goesboom5416
    @goesboom5416 3 года назад

    Is setpoint in blackbox explorer the target?