A Nice Olympiads Trick | No Calculator Allowed | 2^15 + 2^12 + 2^9 + 2^6 + 2^3 |

Поделиться
HTML-код
  • Опубликовано: 28 окт 2024

Комментарии • 10

  • @vikasheda2091
    @vikasheda2091 2 месяца назад +1

    Arrange it in increasing figures
    Then take comman 2^3 in each sequence

  • @jimwalshonline9346
    @jimwalshonline9346 2 месяца назад

    Well done...I plan to save and study this one.

  • @Guidussify
    @Guidussify 2 месяца назад +2

    What is the advantage of doing the calculation this very long way instead of just calculating powers of 8 (2^3) and adding them?

  • @jerrypaquette5470
    @jerrypaquette5470 2 месяца назад +2

    I did it much easier.
    know your powers of 2's at least to 2^10
    2^3 = 8, 2^6 =64, 2^9=512
    2^10 = 1024
    2^12 = 2^10 x 2^2 = 1024 x 4 = 4096
    2^15 = 2^10 x 2^5 = 1024 x 32 = 32768
    32768 +4096+512+64+8 = 37448

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 месяца назад +2

    I did it in my head.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 месяца назад +2

    2^15+2^12+2^9+2^6+2^3=37448

  • @yvesdelombaerde5909
    @yvesdelombaerde5909 2 месяца назад

    On met 2^3 en évidence, on a 8*(2^12+2^9+2^6+2^3+1) ensuite on recommence 8*(8*(2^9+2^6+2^3+1)+1) etc. Tous ceux qui ont appris à programmer sur les calculettes HP auront trouvé rapidement.

  • @allentracht7821
    @allentracht7821 2 месяца назад +1

    Learn and use the sum of a geometric series formula: en.wikipedia.org/wiki/Geometric_series#Sum