A-Level Maths: E1-06 [Trigonometry: Finding Exact Values of sin(x), cos(x) & tan(x)]

Поделиться
HTML-код
  • Опубликовано: 18 дек 2024

Комментарии •

  • @jameul363
    @jameul363 3 года назад +54

    i love u so much dawg

  • @Sheena1234ization
    @Sheena1234ization 5 лет назад +35

    Much easier to understand than that CAST diagrams books and teachers always bang on about!
    Also random question but where did the whole concept come from with sin , cos, tan? In the real world would you need ti use the graphs of these functions?

  • @salmaahmed2909
    @salmaahmed2909 5 лет назад +21

    That was so helpful, thank you

  • @sarahtumelo2798
    @sarahtumelo2798 Год назад +2

    Best Teacher ever, thank you so much.

  • @AndreaMotion-cl1cy
    @AndreaMotion-cl1cy Год назад +6

    11:46 hi jack, I know the angles in question are obtuse but when drawing the sin x graph why do you stay between 90 and 180?

    • @TLMaths
      @TLMaths  Год назад +2

      Angles between 90 and 180 are obtuse?

    • @Atom803
      @Atom803 Год назад +5

      because triangles cant be above 180 degrees and so it cant be above 180

  • @FahimShaheer
    @FahimShaheer 3 года назад +11

    Legend

  • @woahart7476
    @woahart7476 4 года назад +6

    Really helpful!

  • @JannahMa
    @JannahMa Год назад +1

    Ur my savior

  • @c6mbo
    @c6mbo Год назад +1

    thank you so much for this

  • @karotic
    @karotic 2 года назад +2

    inverse tan(x)=-43/6root66 gives me -43.41 on the calculator which is not an obtuse angle. I’m confused.

    • @TLMaths
      @TLMaths  2 года назад +2

      The calculator only gives you the solution between -90 degrees and 90 degrees when you use inverse tan. So you need to add 180 degrees to get the obtuse angle.

  • @tallula4884
    @tallula4884 4 года назад +5

    The proof of each trigonometric function shows that sin(x) is the value of the height of the triangle, the cosine(x) is the width and the tan(x) is the gradient. So when we are working out in this question the values of tan and cosine we input them into the ratio given by SohCahToa and not just simply out them as either the height, width or gradient? Can someone please expalin my confusion as i feel the two rules are contradictory. I feel it has somthing to do with the radius being the value of one in the proof example?

    • @TLMaths
      @TLMaths  4 года назад +7

      sin(x) is the height and cos(x) is the base of a right-angled triangle with angle x, IF the hypotenuse is of length 1. Otherwise, sin(x) = opp/hyp, cos(x) = adj/hyp as from SOHCAHTOA.

    • @tallula4884
      @tallula4884 4 года назад +3

      TLMaths Thank you! that’s so helpful

  • @x_nova_x7469
    @x_nova_x7469 2 года назад

    sir how would you do it if it said something like cos squared or sin squared or something

    • @TLMaths
      @TLMaths  2 года назад +1

      Well if you know sin(x)=1/4, for example, then sin^2(x)=(1/4)^2=1/16

  •  4 года назад

    I need to solve 2sin^3 x +3sin^2 x -8sinx+3 equals 0 and I’m unsure where to go. Help is much appreciated 👍🏼

    • @TLMaths
      @TLMaths  4 года назад +3

      Looks like a hidden cubic. Solve 2y^3 + 3y^2 - 8y + 3 = 0 to get y = -3, 1, 1/2
      Then solve:
      sin(x) = -3 (no solutions)
      sin(x) = 1
      sin(x) = 1/2

  • @Ss-bt4to
    @Ss-bt4to Год назад

    How 6 Sqrt root?? Is not it 65 squared times 43 then we put the result in sqrt?

    • @TLMaths
      @TLMaths  Год назад

      a^2 + 43^2 = 65^2
      a^2 = 65^2 - 43^2
      a^2 = 2376
      a = sqrt(2376) = 6*sqrt(66)

  • @johnsergie3906
    @johnsergie3906 3 года назад +2

    Hi, Sorry to bother you but please can you help me with this question, It would be highly appreciated.
    Solve, for -180

    • @TLMaths
      @TLMaths  3 года назад +15

      tan(x-40) = 1.5
      x-40 = arctan(1.5) = 56.30993247
      x = 96.30993247
      Then add/subtract 180 to this value to collect any other solutions.
      x = 96.3... - 180 = -83.69006753
      so x = {-83.7,96.3} to 1dp

    • @emretorbas1021
      @emretorbas1021 2 года назад +15

      @@TLMaths legend