Few-Shot Learning (2/3): Siamese Networks

Поделиться
HTML-код
  • Опубликовано: 16 янв 2025

Комментарии • 42

  • @hp2631
    @hp2631 3 года назад +22

    Please upload more of these English lectures sir! Best content ever! I'm not bored listening to your careful explanations!

  • @haroon180
    @haroon180 7 месяцев назад +1

    This is hands down the best explanation of Siamese networks on RUclips

  • @karanacharya18
    @karanacharya18 2 года назад +5

    Mind-blowing and very-well explained. This video succeeds in giving us the intuitive aha moment when you finally understand what few-shot is and how Siamese networks are used for that! Thank you.

  • @prasadjayanti
    @prasadjayanti 3 года назад +9

    After reading dozens of papers (including the original ones) this is the place where I got my understanding of Siamese clear. Thanks.

  • @subhrajitbhowmik7980
    @subhrajitbhowmik7980 2 года назад

    Hands down the best tutorial on Siamese Networks!

  • @antulii5390
    @antulii5390 3 года назад +9

    Best description of Siamese Network, can you also make video on MAML?

  • @loveplay1983
    @loveplay1983 3 года назад +2

    Best tutorial that I have ever seen, much better than those technical articles or Academic thesis which are full of mathematical symbols and formulas

  • @arindamjain7536
    @arindamjain7536 Год назад

    Best Video on this topic so far!

  • @sanketgadge9060
    @sanketgadge9060 Год назад +1

    Holy shit, dont know why other articles are little bit harder to understand, but explained very good. Thanks a lot!

  • @jaylenzhang4198
    @jaylenzhang4198 Год назад

    Thank you, very explicit explanation. 讲的太好了老师!感谢!

  • @Fers-g2y
    @Fers-g2y Месяц назад

    Clear and good explanation, good lecture, thanks

  • @larissabasso531
    @larissabasso531 2 года назад

    Best lecture. Please keep posting.Best video ever.

  • @jerbijmaziz3356
    @jerbijmaziz3356 2 года назад +1

    thank you sir for all the effort you made in this clear explanation it helped me a lot in understanding Siamese network

  • @arjunpukale3310
    @arjunpukale3310 4 года назад

    Best video on few shot learning

  • @Tiago_R_Ribeiro
    @Tiago_R_Ribeiro 2 года назад

    Presentation is very well prepared graphically. Simple and with pauses. It looks easy, but it's not. Thank you, Shusen Wang,🙏

  • @davidlanday2647
    @davidlanday2647 3 года назад +3

    In practice, what mechanism would you use to generate the support set? I ask because let's say your support set contained a bunch of rodents so it might be hard to distinguish a squirrel, whereas you have another support set with a variety of objects including your support squirrel. Obviously, you now have a choice of two support sets where using one will be harder to correctly classify your squirrel. Do we include a metric in the loss that accounts for the distances between the support images? For example, we want to help out when our support images are more similar to one another, but we don't care when our support images are already pretty dissimilar.

  • @胡太維
    @胡太維 3 года назад

    淺顯易懂~讚

  • @gemini_537
    @gemini_537 9 месяцев назад

    I feel like autoencoder can be used for the classification task and might work better. Because autoencoder can map the input into a latent space which captures the patterns.

  • @8eck
    @8eck 2 года назад +1

    Great explanation, thank you. I'm confused about last example of classification and support set. I was thinking that after training, model should have distance metric and present predictions for all classes provided in training before that.

  • @lindadelalifiasam5878
    @lindadelalifiasam5878 Год назад

    Thank you Wang 😊

  • @stracci_5698
    @stracci_5698 5 месяцев назад

    This was very clear, thank you!

  • @gingerbrown9715
    @gingerbrown9715 2 года назад

    Your explanations are very easy to understand. Thank you!

  • @RomeoKienzler
    @RomeoKienzler 2 года назад

    Thanks so much for the lectures!!!

  • @wooheonhong5916
    @wooheonhong5916 3 года назад +3

    I'm a non-English speaker, but I understand everything.

  • @yuvarajum2594
    @yuvarajum2594 2 года назад

    Good description on siamese

  • @inuyashayagami2281
    @inuyashayagami2281 2 года назад

    Sweet Explanation! Thanks!

  • @ShopperPlug
    @ShopperPlug 2 года назад

    Excellent explanation.

  • @geoskyr966
    @geoskyr966 10 месяцев назад

    so the training set is much bigger than the support set ? and i only use the support set to help with the classification of query images ?

  • @av12-db
    @av12-db 3 года назад

    this lecture is awesome!

  • @ylazerson
    @ylazerson 3 года назад

    gerat video - thanks!

  • @PrajwalSingh15
    @PrajwalSingh15 3 года назад

    Thanks for such a nice explanation.

  • @Небудьбараном-к1м
    @Небудьбараном-к1м 3 года назад

    What a great tutorial!

  • @SYANG-qg4yx
    @SYANG-qg4yx 3 года назад

    I like the detailed explaination

  • @VarunKumar-pz5si
    @VarunKumar-pz5si 3 года назад

    This is freaking awesome !!!!!!!!!!!

  • @长天一月
    @长天一月 3 года назад +2

    Very similar to word embedding

  • @arjunpukale3310
    @arjunpukale3310 4 года назад

    Is any pytorch code available on this?

  • @talha_anwar
    @talha_anwar 4 года назад

    Is triplet loss create cluster of similar images in future space?

    • @ShusenWangEng
      @ShusenWangEng  4 года назад +2

      Yes, its goal is to make the same class in a cluster

  • @annchao2051
    @annchao2051 3 года назад

    一年后的留言 这个和simCLR 是一个吗

  • @alphonseinbaraj7602
    @alphonseinbaraj7602 4 года назад

    nice sir..thank you

  • @bk3777
    @bk3777 2 года назад

    if you can provide the code for implementation then it will be great.

  • @MrSnackTrack
    @MrSnackTrack 4 года назад

    Great video! :)